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Phase distortion in wavefront propagation is one of the key problems in optical imag-
ing and laser optics applications. We present a hybrid VLSI and optical system for
real-time adaptive phase distortion compensation. The system implements stochastic
periurbative gradient descent, performing “model-free” adaptation independent of the
specifics of both the distorting optical medium and the control elements. A mixed-mode
VLSI system interfaces with a liquid-crysial spatial light modulator (SLM), control-
ling 127 parameters in parallel which adjust the wavefront phase profile. On-chip
CMOS circuitry performs parallel stochastic perturbative gradient descent/ascent of
an externally supplied optimizalion metric, e.g. a direct measure of image qualiry.
Parallel random perturbations of the parameters are generated locally, and the re-
sulting differential performance measure is locally correlated with the perturbations
to generale parallel parameter updates, implementing a random-direction, stochastic
approximation version of gradient descent. Additional on-chip circuitry provides Jor
liquid-crystal AC modulation and adaptive biasing of the parameter mean. Experi-
mental results on adaptive laser beam focusing are included.

16.1 INTRODUCTION TO ADAPTIVE OPTICS

Many optical systems, such as imaging systems or laser beam communication 5y §-
tems, suffer performance degradation due to distortions in the optical wavelront. As
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an optical wave propagates through an optically inhomogeneous medium such as the
atmosphere, differences in the index of refraction along the propagation path cause
variations in the speed of light propagation, which lead to phase distortions (aber-
rations). The technique used to compensate these wavelront distortions is adaptive
optics.
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Figure 16.1 General schematics for adaptive imaging (top) and laser beam focusing
(bottam) systems based on direct optimization of a system performance metric.

“Adaptive optics” is a term describing optical systems whose characteristics can
be modified by dynamically changing the wavefront [1]. The fundamental ideas of
adaptive optics were first formulated by Linnik [2] and Babcock [3] in the late 1950s,
but practical implementation of these ideas was impeded at that time by the lack of
suitable wavelront control techniques.

Since that time the situation has changed and the demands for adaptive wavefront
control have increased dramatically. In addition to traditional astronomy, perhaps the
primary stimulus for adaptive optics, an important drive to the development of adaptive
optics techniques was the need for laser systems capable of successfully operating in
the atmosphere: laser communication systems, laser lidars, active iraging, and laser
beam focusing systems. Progress in laser technology, laser medicine, fiber oplics,
and optical information processing also required substantial improvements in laser
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beam quality, and especially wavefront quality as achieved through the use of adaptive
wavefront correction techniques.

The main principles of adaptive optics were formulated by studying the classical
problem of phase distortion compensation of a wave originating from a point source
(star) and then propagating through a phase distorting medium. The assumption of
a point source is the foundation for the most widely used adaptive optics control
algorithm, phase conjugation [4, 5, 6]. The phase conjugation algorithm requires
knowledge ol the wavefront aberration ¢(r, t), where £ is time and r is a vector in the
plane orthogonal to the direction of wave propagation. The phase conjugation cor-
rection u(r, f) = —(r, t) introduced by a deformable (adaptlive) mirror compensates
the phase aberrations to obtain an undistorted image of the point source. In some
applications, most notably astronomical observations, phase conjugation works quite
well and has been used with Earth-bound telescopes to greatly enhance photographic
images [13, 14].

One problem with the phase conjugation technique is that the phase modulation
(r,t) can not be directly measured and must be reconstructed from intensity data
measurements obtained from a wavefront sensor. Retrieval of phase information
from wavefront sensor data requires extensive and time-consuming calculations that
significantly increase adaptive system cost and complexity. Another problem is the
assumption of a point source. There are a number of important applications where
the assumptions upon which phase conjugation is based are not valid and other wave-
front control strategies should be considered: for example, atmospheric imaging of
exlended objects, laser beam focusing on targets with rough surfaces, and the adaptive
compensation of nonlinear effects in the propagation of high-power laser beams.

There is an aliernative and more general approach that does not require either
determining phase information from the intensity, or a point sourcc image. In an
adaptive system based on direct optimization of a system performance metric, the
control algorithm can be made independent of the system model (“model-free” or
“blind” optimization [7]). A schematic illustration of this concept for atmospheric
imaging systems and laser beam focusing systems is shown in Figurel6.1. The
measured quality metric J = J(u) is a function of the control parameters u =
{t1,...,Un,...,un} of the wavefront corrector. The parameters u,, could be, for
instance, voltages applied to electrades of a deformable mirror or a spatial phase
modulator.

To optimize metric J, various methods approximating gradient descent based on
physical measurements can be applied [8]. For instance, in a sequential perturbation
method the partial derivatives d.J/0u,, are estimated in sequence, by applying small
perturbations Au,, to the control paramcters u,, one at a time and measuring corre-
sponding changes A.J,, to the quality inetric [9]. The critical issue with such technigues
is the adaptation speed. The convergence time of the sequential optimization process
increases more than linearly with the number of control elements V.

The increase in adaptation time caused by sequential perturbations can be reduced
using the multi-dither technique [10]. In this method perturbations in the form of
harmonic signals having small amplitudcs and different dithering frequencies are si-
multaneously applied to all wavefront corrector electrodes. Estimates of the gradient
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components can be obtained by performing synchronous signal detection in each con-
trol channel. With this technique the increase in /N requires a corresponding increase
in the system frequency bandwidth, typically limited by system hardware (primarily
by wavefront corrector frequency bandwidth) [4]. Accordingty, the number of control
channels for the multi-dither technique does not exceed 102,

Among model-free optimization techniques that have recently appeared stochastic
paralle] gradient descent is perhaps the most promising for adaptive optics applications
[11, 12]. The greatest potential benefit for adaptive optics applications comes from the
fact that the parallel perturbation technique is well-suited for analog VLSI implemen-
tation {20, 21, 22, 28]. The technique has been demonstrated in analog VLSI, both in
sequential [23] and parallel [24, 25, 26] forms.

Atmospheric Wavefront

turbulence Corrector C
Cbject B mera
vist |/ Iﬂ';.g"
System qQuality
ys analyzer
Wavefront
Corrector
Perturbation
generator
Uppraapllpy- oty ContrD]' v Gfﬂdiel?t J
block [ estimation

Figure 16.2 Bleck diagram for an adaptive hybrid VLSI-optical imaging system based
on image quality metric optimization using stochastic parailef gradient descent.

In this chapter we report on the first VLST hardware implementation of a system for
adaptive optics hased on this method. Figure 16.2 iilustrates our approach. Section 16.2
briefly reviews gradient descent in relation with model-free techniques, and presents
the parallel stochastic perturbative gradient descent equations. Section 16.3 gives a
detailed description of an efficient implementation of the algorithm in analog VLSI
hardware. Section 16.4 combines the analog hardware with optics to create an adaptive
laser beam focusing system. In Section 16.5, we characterize performance of adaptive
wavefront distortion correction using experimental results obtained from this system.
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16.2 MODEL-FREE STOCHASTIC PARALLEL OPTIMIZATION

16.2.1 Gradient Descent

One possible technique to adaptively optimize the quality metric J = J{u) is by
gradient descent of J in the control parameters u, of the wavefront corrector (see
Figure 16.1).

Gradient descent algorithms incrementally adjust the parameters u,, based on in-
stantaneous estimates of the gradient components 8J/8u,, at each iteration m:

m+1) _ , {m) _ 3_‘}
wlmtl) = ny B {16.1)
where  (not necessarily constant) determines the size of the step in the direction of
the steepest gradient from the current position on the surface of the function J(u).

In principle, the gradient components can be calculated from a model of the control
system. Often such a model is rot available, or too complex to estimate or evaluate.
This is particularly true in the case of optical phase aberration, for which a precise model
would have to account for the index of refraction profile over the entire propagation
path. Even if this information is available, computing the gradient from such a
model would be computationally too expensive. This motivates the use of model-free
eptimization (also known as blind optimization) techniques [7].

16.2.2 Model-Free Optimization

Model-free stochastic optimization, loosely inspired by principles of adaptive neural
computation {7], provides a means to perform parallel descent of any scalar function
without a priori knowledge about the internal workings of the control system. The
technigue treats the system as a “black box” that allows access to its internal parameters
tin $0 they can be tweaked, or perfurbed, and returns an estimate of the performance
metric J on demand (Figure 16.2).

The general principle isrooted in theory of stochastic approximation[16, 17,18, 19],
which formulates conditions under which a stochastic procedure, applying incremental
parameter adjustments, converges to a minimurm of a scalar optimization function based
only on discrete and noisy evaluations of that function. The technique is model-free,
since it requires no knowledge of how each internal control parameter independently
affects the system output. Instead, it relies on direct scalar measurements of the
system output under perturbation of the parameter(s), plus local information on how
(i.e., in which direction} the parameter vector was perturbed, to estimate the gradient
component in the direction of the parameter perturbation.

The stochastic perturbative optimization operates on the same basic principle as
standard gradient descent (16.1), except that a perturbation Aw,, is applied to each
parameter. The perturbation and the resulting response of the system, A.J, are used as
approximations to the true gradient components.

The convergence rate of a method that uses scalar function evaluations of course
cannot be as fast as pure gradient descent, which makes use of vector information
as provided by the true gradient. However, parallel stochastic perturbation of the
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parameters yield a convergence rate significantly faster than sequential perturbation
methods. In fact, for mutually uncorrelated perturbations the gain in speed is a factor
/N, where N is the number of parameters [20]. For optical aberration compensation,
the rate of convergence can be further improved by modulating the correlation between
the perturbations of adjacent control parameters in a phase modulatos [12].

16.2.3 Paralle! Stochastic Perturbative Gradient Descent

In parallel stochastic optimization, a random ensemble of perturbations is applied to
all N control parameters simultaneously. The original state of the control system is
restored after each perturbation, and the parameters adapt along the direction of the
perturbation vector by an amount proportional to the measured AJ value, which can
be positive or negative to indicate improvement or deterioration of the optimization
function in that direction.

Metric surface

Figure 16.3 Stochastic approximation gradient descent explores the performance met-
ric surface J at a few points around the current parameter state u and chooses the
direction in the subspace resulting in steepest descent of J.

In the simplest scenario, the perturbed metric AJ is given in terms of the perturba-
tions Au,y, as

AJ = JI:U;[ + Aug,us + ﬁuz,...,u}\r <+ -E'.&‘U.N) — J(ul,ug,...,uN) (16.2)

from which, by Taylor expansion,

AJ dJ Auy
Ay, Bun Zaug Aty (16.3)

Under certain conditions, when the perturbations Au, are random and statistically
independent, the second term of Equation (16.3) reduces in expectation 1o zero, vielding
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a good approximation to the true gradient for large N. This is true in particular
when the the perturbations are Bernoulli distributed, of fixed amplitude but random
sign, Au, = to [20, 21], but also valid for other, continuous-valued distributions
of random perturbations [18). More accurate results are obtained with a two-sided
approximation to the gradient, using a differential measurement under complementary
perturbations = Au,, yielding the following simple implementation:

u;, = uw™-—ozl™, Vam
i o= ko
Au, = ul —ul = 2071',(,”‘) (16.4)
A = Jt-—-J-
AJ
w =W - Tau,

where the perturbation signals w,(,m) are generated from a Bernoulli random distribution:

7™ =+1, Pr(nl™ =+1)=05, VYn,m {16.5)
with uncorrelated statistics across parameters and over time:
E(ﬁ%m)“:{:ﬁ) = 5ﬂp fsmq: Vn,m,pq. (16.6)

Considering that the perturbation amplitudes | Au,| are identical (20} for all perturba-
ttons, the specification of the update (16.4) is further simplified:

wd™ T = i yirlmiA g, (16.7)

where the constant v’ = /20 absorbs both learning rate and perturbation strengths.

16.2.4 Implementation

First, a random or pseudorandom binary sequence generator creates a vector of values
?r,({‘") = 1. The controller uses the random vector to perturb each of the parameters
a distance ¢ from its current state. This new state S = —1 is the negative-phase
perturbation. The controller then waits until the perturbed state propagates through
the system and produces a valid output J—. After the perturbation, the system returns
to its original state uL’"J and then is perturbed in the opposite direction to the first
perturbation. This new state § = +1, is the positive-phase perturbation. Again,
the controller waits for the perturbation to propagate through the system and produce
a valid output J*. Ax this point, two points on the performance metric surface are
known, and a gradient estirnate in the direction of the random perturbation vector can
be computed. The parameters are adapted in this direction by an amount proportional
to the gradient, AJ scaled by a gain factor ', and multiplied by the pertarbations ..
The multiplication operation is straightforward because perturbations are constant:
amplitude, m, = £1.
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16.3 MIXED-MODE VLS| HARDWARE

Stochastic perturbative gradient descent works well with analog control hardware
where nonidealities make the system difficult to model and the exact gradient impossi-
ble or hard to compute [23, 24, 25]. Analog components are both nonlinear and subject
to mismatch. The equations governing the behavior of the circuit depend on factors
such as local temperature which are neither well-controlled nor easily measured. A
model of such a system ultimately becomes much more complicated than the system
itself. Model-free adaptation is not merely a convenience; it is a necessity,

Before considering the application of stochastic gradient descent to adaptive optical
phase correction, we will examine the basic design of a mixed-mode VLSI system
which performs perturbative learning. The design makes use of a compact and accurate
charge pump design [27] augmented with perturbation and update circuitry [25, 26].
The general design methodology is described in [28]. The system consists of five main
parts:

1. an analog memory circuit which maintains each control parameter u,,
2. acircnit which perturbs the parameter

3. acircuit which adapts the paratneter

e

. an output driver specific to the application
5. apseudorandom vector sequence generator

The first four parts form a module which is duplicated for each parameter of the system,
while the random number generator provides input to each module in parallel. This is
depicied in Figure 16.4.

16.3.1 Parallel Random Perturbation Generator

The first step in the algorithm is to generate the random vector @y ...mx which
determines the direction of perturbation of each parameter. A pseudorandom sequence
suffices, and the period of the sequence does not have 1o be especially long; however,
it makes sense to maximize the periodicity for the number of parameters available.
A typical way to implement a pseudorandom bit generator is a Linear Feedback
Shift Register (LFSR) of a specific length, from which the values of the MSB (Most
Significant Bit) and one other bit at cycle n are exclusive-or’d together to generate the
- LSB {Least Significant Bit) value for cycle n + 1. Tables are widely available which
show what register lengths and taps yield maximal-period sequences (sequences which
cycle through all 2¥ possible combinations). A shift register implementation alone,
however, does not suffice, because the sequences over space are correlated over time.
Ome solution 1o decorrelate the bit streams is given in [29], and a simple solution using
two independent counter-propagating LFSRs is given in [26]. A slightly more efficient
alternative is to fold a longer LFSR in half and compute the exclusive-or of each bit of
the top and bottom halves of the register, as shown in Figure 16.5. The figure shows
19 parameter outputs, but because a length-38 register cannot form a maximal-period
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Output 1, Output #' Quiput 'y

Figure 16.4 System hlock diagram.

sequence, the register length is increased by one, forming a length-39 register with a
period of 2%, or 549, 755,813, 887.

The multiplexer at the input stage allows a random seed to be loaded into the system
from an external source SR_in, when SR _override is selected. The design also allows
to bypass the generated random perturbations with a uniform identical perturbation, as
controlled by SR_All. This feature is particularly helpful for parameter renormalization
in the adaptation process as motivated and described in Section 16.4.1.

16.3.2 Parameter Storage

The model-free aspect of the system alleviates most of the concerns normally associated
with analog memory. The analog memory does not have to be calibrated or even
particularly accurate. Its value may leak or drift as long as it does so at a rate slower
than the rate of adaptation. Since adaptation is continuous, long-term storage is not
required, and the memory can be implemented as a charge held on a capacitor, so that
¢ach control parameter is encoded as a voltage. In Figure 16.6, capacitor ) stores the
* parameter u as a voltage y, which is a high-impedance node buffered from the output
node by amplifier A,.

16.3.3 Parameter Perturbation

To explore the state space around its present position, the memory value i must be able
to be perturbed, but more importantly, it must be able to return to its original state after
the perturbation is removed. This requirement is, in fact, easy to satisfy by applying
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Figure 16.5 Folded, decomelated pseudorandom bit vector sequence generator, with
load and override functions.
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the necessary perturbation through capacirive coupling. The AC coupling ensures that
the perturbation has no permanent effect on the parameter.

Perturbation

sign(AJ} o

Vdd =5.0V
GND =00V

Ves=-5.0V
Control Parameter

Figure 16.6 The circuit for encoding, perturbing, and adapting a single parametar [28).
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Figure 16.7 Global control signals applied to all channels. Leff: Cycle control for
system perturbation. Right: Update controller for adaptation circuit.
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A § = $ Update sign(AJ) = W
0 X X 0 0 X X 0
1 -1 -1 | 4V, 1 -1 —1 | Vss
1 -1 +1| -V, 1 -1 +1 § Vdd
1 41 -1 -V, 1 +1 -1 | Vdd
1 41 +1 | 4V, 1 +1 +1 | Vss

Table 16.1 Lefi: Perturbation voltage ® as a function of the algoritbmic cycle and
the perturbation component n. Right: Charge purmnp source-switched voltage w as a
function of 7 and the differential metric AJ. “X" indicates a “don’t-care” condition.

16.3.4 Differentially Perturbed Metric Evaluation

The stochastic perturbative gradient descent algorithm is applied each update cycle
over a sequence of four phases as determined by control values A4 (for perturbation
amplitude) and S (for perturbation phase sign). The global control values 4, S, and
the local random bit 7 determine the perturbation voltage & applied to the bottom of
the coupling capacitor C» according to Table 16.1 (left), which is implemented by the
array of MOS switches shown in Figure 16.7 (left) and Figure 16.6.

During the first phase of the clock cycle A = 0, § = —1, the pseudorandom
sequence generator is clocked to produce a new vector 7. On the next phase, the
negative-phase perturbation, S remains —1 and A = 1, such that the parameter
voltage u is shifted by a value

.
——gylm) L 2 5
U, = uy + 3 +C~3‘§ (16.8)
where
" = -7 V,. (16.9)

At this point in the algorithm, the effect of the perturbation is allowed to propagate
through the system and produce a metric value J~. This metric value is captured
via A/D or sample-and-hold. After capturing the metric, the controlling process sets
$ = 1 and the system performs the positive-phase perturbation. On this cycle,

C
+ _ o m) M2 g4
U, =1y + A +Cg'§ (16.10)
where
&t = T V. (16.11)

Again, the effect of the perturbation is allowed to propagate through the system, and
the new metric value is captured and the first metric value subtracted from it.

This gradient estimate A J, scaled by v/, is split into sign and magnitude components
which are distributed separately to all adaptive parameter elements in parallel. The
sign component is correlated locally (through exclusive OR digital logic) with the
perturbation value as 7 - sign(A.J) to determine the direction of the parameter update.
The magnitude component ¥’ | A J| determines the size of the update.
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16.3.5 Parameter Update

Adaptation 15 performed by the charge pump circuit of Figure 16.6 and the update
controller of Figure 16.7 (right) [28]. The charge pump operates in one of three
conditions: If node w is coupled to Vdd, A3z becomes a current source and leaks
current onto the parameter voltage node, driving the parameter voltage up. If node w
is coupled to Vss, M, becomes a current sink and leaks current off of the parameter
voltage node, driving the parameter voltage down. When w is held at system ground,
halfway between Vdd and Vss, then both M3 and M, are disabled and the parameter
voltage node maintaing a high-impedance, low-leakage state. Source-switching the
transistors in this manner practically eliminates charge injection into node g [27) and
also reduces subthreshold leakage in the off-state.

The single-transistor current sources Mz and M, are not linear with respect to
their control voltages Vupp, and Vypp,. This complicates the task of applying the
magnitude |AJ| to the adaptation through voltage control. Instead, if voltages Vupp,
and Vypp,, are kept fixed, then the current through each is constant during adaptation,
and the parameter voltage drops at a constant rate per unit time. This fact allows the
magnitude of the apdate to be applied linearly by making the length of the “Update”
pulse proportional to [AJ|. The time will of course be quantized to the resolution
{master clock frequency) of the controlling processor, but this quantization can be
made arbitrarily small by proper adjustment of Vupp, and Vypp,,. The charge-pump
design easily allows quantization to microvolt resolutions {28].

After the update is finished, the controlling processor sets S and A4 back to their
initial values (§ = —1, A = 0}, and the cycle repeals,

164 ADAPTIVE PHASE DISTORTION COMPENSATION

16.4.1 Liquid crystal spatial light modulator control

The mixed mode VLSI chip implementing the parallel stochastic perturbative gradi-
ent optimization algorithm was manufactured through MOSIS. A micrograph of the
"AdOpt” chip is given in Figure 16.9. The system contains seven VLSI chips, each
providing stochastic parallel gradient descent aptimization of 19 control parameters
(see Figure 16.8, bottom left),

The system was designed to control a multi-electrode liquid crystal HEX-127 spatial
light modulator (SLM) from Meadowlark Optics, Inc. The SLM consists of two glass
plates with conductive layers (transparent electrodes) on one side, and a thin parallel
aligned layer of nematic liquid crystal between glass plates. One conductive layer has a
form of an array with 127 independently addressed hexagonal-shaped electrodes. The
liquid crystal geometry is shown at the bottom left corner of Figure 16.2. Each cell is
1.15mimn in diameter with 36;¢m spacing. Since liquid crystal is birefringent, the applied
voltage induces a reorientation of the crystal’s optical axis resulting in modulation of
the incident light wavefront or polarization rotation. If the polarization of the incident
light is parallel to the liquid crystal optical axis, the output light expetiences pure phase
modulation.
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Figure 16.8 Schematic {top) and photograph (bottom right) of the experimental setup
for adaptive laser beam focusing using the mixed-mode VLS| systemn, designated
“AdOpt” (bottom [oft).
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Figure 16.9 Micrograph of the 19 parallel channel mixed-rode VLSI stochastic gra-
dient descent optical controller, a 2.2 x 2.25 sq. mm chip fabricated in 1.2 gm CMOS
technology.



374 LEARNING ON SILICON

14

/20 (rad)

0.0

Figure 16.10 Phase-modulation charactaeristic of the HEX-127 SLM.

The VLSI system has 127 outputs which directly control the cells of the HEX-
127 modulator. Each output is an amplitude-modulated 2kHz square wave u* (the
signal required to drive the liguid crystal cells) which is generated by the switched
capacitor driver circuit shown in Figure 16.11 such that & = |u*|. The dependence
of the amplitude of phase modulation  produced by a liquid crystal cell in response
to the applied periedic waveform »* with zero-to-peak voltage amplitude u is shown
in Figure 16.10. This modulation characteristic has a narrow region of cperation (1V
< 1 < 3V) in which the phase amplitude changes rapidly through 27 radians. Inside
this operational range the modulation characteristic can be approximated by a linear
dependence v = .,

Note that during the adaptation process individual cells in the SLM could migrate
outside the desirable operational range towards the modulation characteristic saturation
region, resulting in significant decrease of the performance metric perturbation ampli-
tude AJ and hence decreasing the rate of the control algorithm convergence. The effect
of saturation can be reduced by accounting for the fact that in most adaptive optics
applications the system performance metric J is not sensitive to a constant wavefront
shift by an arbitrary mean value g, that is, J(¥1,...,vx) = J(n — v, ..., VN — 1p).
To prevent drift of the aperture averaged mean phase value during adaptive operation,
the control update algorithm is modified to include an additional penalty term to the
metric J accounting for the drift of the mean as follows [11, 12]:

wl™HD = (M) _ yip(mIA 7 ™) ), (16.12)
N m)

where the control parameter 7™ = & 5 uq corresponds to the aperture aver-
aged phase, and ug is a constant voltage. The reference voltage up = 2V corresponds
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e Dqultu:{_u Out¢a=0

Figure 16.11 This switched capacitor circuit generates the square wave which drives
the liquid crystals of the SLM. On alternating cyclas, the parameter voltage « and its
negative are directed to the output.

to the middle of the liquid crystal phase characteristic in Figure 16.10. The control
parameter @™ is calculated on the VLSI system. Typically, 7 < ~', best imple.
mented by performing the average-value adaptation only once per [ /5] cycles of
the stochastic perturbative gradient descent adaptation, while using the same values
of Vypp, and Vypp, and the same unit length “Update” pulse. The “SR_AIl" signal
(Figure 16.5) temporarily overrides the random bit pattern and forces all values m,
to —1, to perturb all parameters unidirectionatly. The instantaneous phase bias @ is
estimated by the switched capacitor circuit of Figure 16.12, which is distributed over
all channels.

ty u

Ao—q[ My My, p— & SR_9,
(=SE_ _L
T e et 1 i,

My, %

Figure 16.12 Swilched capacitor circuit which estimates the mean phase value of the
SLM by computing the average of u,, over all control parameters.
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16.4.2 Control System Archilecture

The VLSI system requires both analog and digital control signals that were generated
by a desktop PC with two analog/digital input/output cards (Computer Boards CIO-
DA51602/12 and CIO-DAS08). Using these cards the PC generated the timing signals
that drive the VLSI system, performed the criteria measurements and provided control
of the algorithm parameters: perturbation amplitude, the sign and the magnitude of the
coefficient ' in (16.12), and the reference voltage wg. The choice of the VLSI system
aptimization mode, i.e., maximization/minimization of the performance metric, was
implemented by changing the sign of the coefficient . The use of a computer to
conirol parameters of the VLSI system allowed implementation of flexible secondary
parameter control for adaptively changing the perturbation amplitude and/or the value
of the coefficient .

The computer controller may be replaced by an on-board PIC microcontroller for
specific applications requiring less flexibility in control, programmed in non-volatile
memory with the adaptation algorithm needed. The use of the microcontroller makes
the entire control system compact, fast (within the limits of the microcontroller’s A/D
conversion), and relatively power efficient. The microcontrotler board architecture is
shown in Figure 16.13.
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Figure 16.13 Adaptive system, showing supporting electronics hardware in addition
to the custom VLS| hardware.
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16.5 EXPERIMENTAL RESULTS
16.5,1 Adapftive oplical experimenial setup

We characterized performance of the VLSI systems using a simple adaptive laser
focusing systemt shown in Figure 16.8. The beamn from an Argon laser (A = 514nm)
was expanded to a diameter of 30mm and then passed through the HEX-127 phase
modulator. The optical axis of the SLM was set at an angle 7 /4 with respect to the
direction of the input beam polarization. A beamsplitter BS; equally divided the input
wave between two optical channels. Two polarizers P, and P, were placed behind the
beamsplitter. To separate the phase-only modulated component of the input wave the
optical axis of the polarizer P, was set parallel to the liquid crystal optical axis. This
phase modulated wave passed through the lens £, and the beamsplitter BS». A small
pinhole of 25um diameter was placed in the focal plane of the lens L, (with a focal
length F1 = 14in.} A photodetector placed behind the pinhole measured the laser beam
power inside the pinhole. The VLSI system used the photodetector voltage output
(fittered with a simple antialiasing lowpass prior to sampling) as the performance
metric J. A camera C'CD; registered the intensity distribution of the laser beam in
the focal plane of the lens, The video image was displayed on a monitor.

A second optical channel containing a polarizer P;, lens Lo, and camera C'CD; was
used to image the HEX-127 spatial light modulator and make visible the wavefront
change occurring during the adaptation process. The optical axis of the polarizer P
was set orthogonal with respect to the direction of the input beam polarization and atan
angle « /4 with the liquid crystal optical axis. This allowed visualization of the liquid
crystal cell phase modulation as an intensity pattern shown in Figure 16.14(a,c). The
lens L, imaged the intensity pattern of the HEX-127 SLM onto the CC D, camera,
displayed on a second monitor.

The results of adaptive system performance are presented in Figs, 16.14 and 16.15.
The adaptive systemn was exercised with a repeating sequence of performance metric
maximization and minimization. During the first half of the cycle, or 512 steps,
the system performed beam quality metric maximization (' > 0), followed by 512
iterations of beam quality metric minimization. During the minimization stage the
adaptive system created random phase distortions resulting in the laser beam focal
plane intensity spreading out. The characteristic pictures of the HEX-127 intensity
patterns, and the focal plane intensity distributions for both adaptation regimes are
shown in Figure 16.14.

The dependencies J(m), m = 1,...,1024 (adaptation evolution curves) were ay-
eraged over 100 adaptation ¢ycles. The normalized averaged evolution curve (metric
values {J(m)})) is shown in Figure 16.15 {g@). The normalized standard deviation of
the system performance metric oy{m) and the standard deviation of the metric per-
turbation & a ;{m) are shown in Figure 16.15 (b), The normalized standard deviations
were calculated using the following expressions:

((J(m) — ()2 *
)

aj(m) =

(16.13)
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Figure 16.14 Experimental results of wavefront control in the adaptive laser beam
focusing system with the VLS| controller, for performance metric maximization (a},{b)
and minimization (c},(d). The intensity modulation patterns for HEX-127 (a) and the
focal plane intensity distribution (b} correspond to the iteration step mn = 500. The
patterns {c) and {d) correspond to m = 1000.
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<J>

Figure 16.16 Averaged laser beam quaiity metric (a) and standard deviations for
values J and AJ (b} during the sequence of system performance metric J maximization
(m < 512) and minimization (m > 512},
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and

(AT (m) — (AT
0

The evolution curves in Figure 16,15 a show the existence of two characteristic phases
of the adaptation process: a relatively rapid convergence during first 100 to 150
iterations followed by a decrease in the convergence rate, a behavior also observed in
numerical simulations [12]. The convergence occurs approximately 1.5 times faster for
the metric minimization than for metric maximization (Figure 16.15 (a)). This confirms
a natural expectation that it 1s easier to create a phase distortion than compensate one,
The adaptation behavior reflects the fact that the number of system states corresponding
to a highly distorted beam (metric local minimum) is greater then the number of states
corresponding to the local maximum. There are more ways to destroy quality of the
beam then correct it. The presence of noise (laser beam intensity and photocurrent
fluctuations) has more impact on the minimization phase of the adaptation process
because the laser beam intensity is low. Both factors—higher noise level and larger
number of local extrema of the performance metric—result in a significantly higher
level of the performance metric fluctuations (o ;{m) in Figure 16.15 (b)) for the
minimization than for the maximization process. The value of the standard deviation
for the performance metric perturbation (o4 y(m)) was approximately 3% of the metric
averaged value for the maximization and about 7% for the minimization process.

oas(m) = (16.14)

16.6 CONCLUSIONS

We have designed, built and tested a mixed-mode VLSI system for adaptive wavefront
correction using parallel stochastic perturbative gradient descent. Although we have
demonstrated its operation for a phase SLM with 127 elements, our design allows
for expansion by addition of VLSI modules. The speed of operation of our system
is presently limited by the dynamic response of the SLM (in the millisecond range),
Our continued research in this area investigates alternative SLM technologies including
high-speed and large-scale MEMS, coupled with CMOS to integrate control parameters
along with the adaptive processing elements.

This is the first demonstration of a fully-integrated systemn for adaptive phase wave-
front correction using parallel stochastic optimization. Since the implemented op-
timization is model-free and the objective measure can be arbitrarily specified, the
results carry over to a large class of adaptive optics applications such as adaptive imag-
ing through a turbulent atmosphere, or adaptive focusing for medical applications. The
parallel architecture is extendable to higher resolutions (N ~ 102 to 10°% parameters)
which is one of the most chailenging problems in adaptive optics.
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