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ABSTRACT 

 
A conventional Zernike filter measures wavefront phase by superimposing the aberrated input beam with a phase-

shifted version of its zero-order spectral component.  The Fourier-domain phase-shifting is performed by a fixed phase-
shifting dot on a glass slide in the focal plane of a Fourier-transforming lens.  Using an optically-controlled phase spatial light 
modulator (SLM) instead of the fixed phase-shifting dot, we have simulated and experimentally demonstrated a nonlinear 
Zernike filter robust to wavefront tilt misalignments.  In the experiments, a liquid-crystal light valve (LCLV) was used as the 
phase SLM.  The terminology “nonlinear” Zernike filter refers to the nonlinear filtering that takes place in the Fourier domain 
due to the phase change for field spectral components being proportional to the spectral component intensities.  Because the 
Zernike filter output intensity is directly related to input wavefront phase, a parallel, distributed feedback system can replace 
the wavefront reconstruction calculations normally required in adaptive-optic phase correction systems.  Applications include 
high-resolution phase distortion suppression for atmospheric turbulence, optical phase microscopy, and compensation of 
aberrations in optical system components.  A factor of eight improvement in Strehl ratio was obtained experimentally, and 
simulation results suggest that even better performance could be obtained by replacing the LCLV with a more sophisticated 
optically-controlled phase SLM. 
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1. INTRODUCTION 
 

A conventional Zernike filter measures wavefront phase by superimposing the aberrated input beam with a phase-
shifted version of its zero-order spectral component.  The Fourier-domain phase-shifting is performed by a Zernike phase 
plate: a fixed phase-shifting dot on a glass slide in the focal plane of a Fourier-transforming lens.  The superposition of the 
two parts of the beam with different spectral phase shifts produces an intensity pattern which, for small wavefront variations, 
is proportional to the wavefront.   Using an optically controlled phase spatial light modulator (SLM) instead of the fixed 
phase-shifting dot, we have simulated and experimentally demonstrated a nonlinear Zernike filter robust to wavefront tilt 
misalignments.  In the experiments we used a liquid-crystal light valve (LCLV) as the phase SLM.  The LCLV device 
produces an optical phase shift distribution (for linearly polarized light having a certain axis of polarization) which is a 
function of the intensity distribution at the LCLV.  The terminology “nonlinear” Zernike filter refers to the nonlinear filtering 
that takes place in the Fourier domain (due to the phase change for field spectral components being proportional to the 
spectral component intensities). 
 

Because the Zernike filter output intensity is directly related to input wavefront phase, a parallel, distributed 
feedback system can replace the wavefront reconstruction calculations normally required in adaptive-optic phase correction 
systems.  We have demonstrated (theoretically, in simulation, and by experiment) that the nonlinear Zernike filter can be used 
in a parallel, distributed feedback system with a phase-correcting SLM to perform high-resolution wavefront aberration 
correction.  Adaptive optics applications include high-resolution phase distortion suppression for atmospheric turbulence, 
optical phase microscopy, and compensation of aberrations in optical system components. 
 
 First, the mathematical model and justification of the feedback control law are reviewed.  Experimental results are 
then presented.  With the nonlinear Zernike filter feedback system, we experimentally obtained a factor of eight improvement 
in Strehl ratio.  Simulation results suggest that even better performance could be obtained by replacing the LCLV with a 
more sophisticated opto-electronic phase SLM. 
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2. NONLINEAR ZERNIKE FILTER FEEDBACK SYSTEM MODEL 
 
2.1.  Feedback controller synthesis 
 

Consider the direct-control adaptive optics system shown in Fig. 1. This system consists of the following adaptive 
optics components: wavefront corrector, wavefront sensor, and feedback controller. All of the adaptive system components 
are assumed to have high spatial resolution, and thus a continuously distributed approximation of the adaptive system model 
can be used.  The wavefront corrector introduces a phase modulation u(r,t) into the distorted input wave Ain(r,t) = A0(r) 

exp[iϕ(r,t)].  The corrected wave Acor(r,t)  = A0(r) exp{i[ϕ(r,t)+ u(r,t)]} is used as the wavefront sensor input.  The wavefront 

sensor is interfaced with the feedback controller. In comparison with conventional adaptive optics architectures, the phase 
reconstructor is absent and the feedback controller operates directly using the sensor’s output intensity Iout (r,t).  

 

 
 

Fig. 1.  Schematic of a direct-control adaptive optics system. 
 

The dependence of the correction function u on the wavefront sensor output Iout defines the control algorithm built 

into the feedback controller. For a continuous time controller, this algorithm can be represented as a time-dependent 
controlling-phase evolution process: 
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where G is an operator describing the feedback controller.  Synthesis of the wavefront controller G can be based on different 
principles.  In the diffractive feedback adaptive system, both the wavefront sensor and the controller G are selected based on 
an analysis of the nonlinear spatio-temporal dynamics (1).1,2  The major requirement for these dynamics, or equivalently for 
the feedback controller design, is the existence of stationary state solutions of (1) corresponding to phase distortion 
suppression. 
 

Another approach for wavefront controller synthesis is based on the gradient optimization technique.3-5  In this case 
the control rule (1) describes a continuous-time gradient-descent optimization of a system performance metric J:    
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where ),( tJ r′  is a first variation (gradient) of the cost functional and η is a constant positive for cost functional 

maximization and negative otherwise.  There are two approaches that can be used for practical implementation of the gradient 
descent algorithm (2): model-free, and gradient-flow optimization.  In the model-free optimization technique, an 

approximation ),(
~

tJ r′  is used instead of the “true” gradient ),( tJ r′ .  This approximation can be obtained by applying a 

small perturbation δu to the wavefront corrector and measuring the corresponding change δJ of the system performance 
metric.  For the case of the recently developed parallel stochastic gradient descent technique, the gradient approximation used 
is proportional to the product δJδu.6-9  The relatively low convergence rate is the major drawback of the model-free 
optimization technique, particularly noticeable for high-resolution adaptive optics. 
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A different idea is utilized in the gradient-flow optimization method, which is widely used for digital image 

processing applications.10-12  The gradient ),( tJ r′  is calculated analytically based on knowledge of the system’s 

mathematical model and performance metric.  The problem is that in most adaptive optics applications, the system model, 
which includes phase aberrations, is unknown.  In addition, for practical implementation of the gradient-flow technique in 
adaptive optics, the gradient ),( tJ r′  should be dependent only on available information: here, the wavefront sensor output 

intensity Iout (r,t) and the controlling phase u(r,t).  This requires gradient representation in the following form: ),( tJ r′ = 

],[ outIuJ ′ .  The nonlinear Zernike filter feedback system we use is related to a gradient-flow direct-control technique (in the 

sense that the dynamics include include a gradient-flow term, along with other terms that disappear when the system is 
linearized).  
 
2.2.  System performance metric and gradient-flow dynamics 
 

For a number of adaptive optics applications, a natural measure of system performance in correcting the aberrated 

wavefront is the Strehl ratio St = IF(q=0)/ 0
FI .  Here IF(q) is the intensity of the output wave in the lens focal plane (Fig. 1), 

and 0
FI  is the corresponding intensity in the absence of phase aberrations.  Maximization of the Strehl ratio using the gradient 

descent technique may result in two undesirable phenomena: drift of the aperture-averaged phase )(tu towards the edge of 

the wavefront corrector operational range, and phase discontinuities, both of which may occur during the adaptation process.  
To prevent aperture-averaged phase drift and to smooth the controlling phase (i.e., to suppress discontinuities and noise) the 
system performance metric J may include (besides the Strehl ratio) additional penalty terms:    
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where ∫−= rr 21 ),()( dtuStu  is the aperture-averaged phase, u
0
 is a desirable value for )(tu , and α1 and α2 are weight 

coefficients determining penalty term contributions.  For now, ignore in (3) the time dependence of both phase aberrations 
and the controlling phase by assuming that phase aberrations are stationary state (“frozen”).  The complex amplitude of the 
input field (after passing through the wavefront corrector) can then be represented in the form 

)]}(~)([exp{)()( 0 rrrr ϕ+= uiAAcor .  Equation (3) then becomes 
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where ϕϕϕ −= )()(~ rr  is the spatially modulated component of the wavefront aberration, and β1 and β2 are new weight 

coefficients.  The first term in (4) is proportional to the intensity of the input field zero spectral component IF(q=0).  Note that 

expressions for the weighting coefficients in (4) are irrelevant for the analysis below and for this reason are not defined.  
Consider the variation δJ of the cost functional resulting from the small perturbation δu of the controlling phase:  

∫ +′=−+= )()()(][][ 2 uoduJuJuuJJ δδδδ rrr , (5) 

where the term o(δu) describes second and higher order terms with respect to the phase variation δu.  Using (5) for the cost 
functional gradient we obtain 
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000 )]}(~)([exp{)()exp( duiAiAA ϕ∆ .13  Note that the value 2

0A in (6) is proportional to the Strehl 

ratio.   
 

If we now embed the control function u(r) in a family of time-dependent functions u(r,t) and consider the time-
dependent evolution of J in the direction of the cost functional gradient, the gradient-flow dynamics (2) thus leads to the 
following nonlinear diffusion equation describing the controlling phase update: 
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The coefficients d, γ and µ are dependent on the parameters α1, α2, and η introduced in (2) and (3).    
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2.3.  Conventional Zernike filter output intensity 
 

The schematic for a conventional wavefront sensor based on the Zernike phase contrast technique (Zernike filter) is 
shown in Fig. 2.  It consists of two lenses with a phase-changing plate (Zernike phase plate) placed in the lenses’ common 
focal plane.  The phase plate has a small circular region (a dot) in the middle that introduces a phase shift θ  near π/2 radians 

into the focused wave.14,15  The radius of the dot, Fa , is typically chosen to equal the diffraction-limited radius dif
Fa  of a 

focused, undistorted input wave.  The complex transfer function T(q) for the focal-plane filter is 
θieT =)(q  for  |q| ≤ q0, and 

T(q) = 1             otherwise. 

  (8) 

The wave vector q is associated with the focal plane radial vector rF through q = rF /(λF), where F is the lens focal length, 
λ is wavelength, and q0 = aF /(λF) is the cutoff frequency corresponding to the dot size aF.  For the sake of convenience, 

consider the following variable normalization: the radial vectors r
 
 in the sensor input/output plane and rF in the focal plane 

are normalized by lens aperture radius a, the wave vector q by a-1, and the lens focal length by the diffraction parameter ka2 
(where k = 2π/λ is the wave number).  Correspondingly, in the normalized variables, q = rF 

/(2πF) and q0 = aF /(2πF) (where 

the dot size aF is also normalized by a).  
 

 
 

Fig. 2. Conventional Zernike filter. 
 

Consider a simplified model corresponding to a focal plane filter affecting only the zero-spectral component.  In this 

case we have θieT =)(0 and T(q)=1 for q≠0.  Assume an input wave Ain(r) = A0(r) exp[iϕ(r)] enters a wavefront sensor, 

where I0(r)= )(2
0 rA  and ϕ(r) are the input wave intensity and phase spatial distributions.  The sensor’s front lens performs a 

Fourier transform of the input wave. Within the accuracy of a phase factor, A(q) = (2πF)-1 F [Ain(r)], where F [ ] is the 

Fourier transform operator and A(q) is the spatial spectral amplitude of the input field (i.e., the field complex amplitude in the 
focal plane).15  In normalized variables, the field intensity in the focal plane can be expressed as a function of spatial 
frequency: IF 

(q) = (2πF)-2 |A(q)|2.  The influence of the focal plane filter can be accounted for by multiplying A(q) by the 

transfer function T(q): 

Aout(q)= A(q)[1- δ(q)] + θie  A(q)δ(q), (9) 

where Aout(q) is the focal plane wave complex amplitude after passing through the spatial filter, and δ(q) is a delta-function.   

The wavefront sensor output field can be obtained by taking an inverse Fourier transform of (9): 

Aout(r)= Ain(r) – (1 – θie ) A , 

rr∫= 2)( dAA in  , 

(10) 

where A  is the spatially averaged input field complex amplitude. For the sake of simplicity, we neglected the 180° rotation 
of the field performed by the wavefront sensor lens system. 
 
 Suppose that the conventional Zernike filter input is )]}(~),([exp{)(),( 0 rrrr ϕ+= tuiAtAcor , the corrected beam in 

the adaptive optic system of Fig. 1.  Equation (10) then becomes 

Aout(r,t)= Acor(r,t) – (1 – θie ) )exp()(0 ∆itA . (11) 

For θ = π/2, the intensity distribution in the wavefront sensor output plane is then given by 

                            ]})(~),(sin[])(~),(){cos[()(2)(2)(),( 00
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The output intensity (12) is similar to the typical interference pattern obtained in a conventional interferometer with reference 
wave – the intensity is a periodic function of the wavefront phase modulation.   
 
2.4.  Gradient-flow dynamics and adaptive feedback controller synthesis 
 

Similar to (7), a feedback controller based on the use of the conventional Zernike filter can be represented in the 
form: 
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where Iout(r,t) is given by equation (12).  Comparing equation (12) with the sinusoidal term in equation (6) for the gradient of 

J(r,t), we see that equation (12) has three additional terms: −+
2

00 )(2)( tAI r ])(~),(cos[)()(2 00 ∆ϕ −+ rrr tutAA .  These 

additional terms in equation (13) could potentially destroy the gradient-flow dynamics.  To evaluate the influence of these 
“parasitic” terms we simplify the problem by assuming that the input beam intensity distribution is uniform, i.e., 

const)( 00 == II r .  In this case the term 
2

00 )(2 tAI +  is spatially uniform and introduces an additional constant phase shift 

that has no effect on the dynamics.  Indeed, this additional phase shift is automatically compensated due to the penalty term 
in the cost functional (4) that prevents the average phase from drifting away from some specified value u

0
.  A more 

complicated issue is the impact of the cosine term in (12).  Assume the residual (uncompensated) phase distortion 
)(~),(),( rrr ϕ+= tutw is small (|w|<<1 for all r) and hence the value ∆ in (12) approaches zero.  In the linear approximation 

the cosine term in (12) approaches the constant 0000 2])(~),(cos[2 AAtuAA ≈−+ ∆ϕ rr , which does not impact the system 

dynamics.  Therefore, for relatively small-amplitude phase distortions, the adaptive system with the conventional Zernike 
filter (13) approximates a gradient system.  What the numerical and experimental results suggest, however, is that the 
convergence behavior of the Zernike filter feedback system is actually fairly robust, and extends well beyond the range of 
small-amplitude phase distortions. 
 

The discrete time version of (13) corresponds to the following iterative wavefront correction algorithm: 

][)()()()( 0
)()()(2)()1( uuKIuduu nn
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 where the index n defines the iteration number.  
 
2.5.  Nonlinear Zernike filter representation 
 

In the nonlinear Zernike filter the phase spatial light modulator (e.g., liquid-crystal light valve) placed in the sensor’s 
focal plane introduces a phase shift θ dependent on the focal plane intensity distribution IF(q), i.e., θ  = θ (IF).  A simple 

model for the phase SLM is to take the phase shift to be proportional to the focal plane intensity: θ  = α IF, where α  is a 

phase modulation coefficient.   If the Strehl ratio is sufficiently large, enough of the intensity is in the zero-order spectral 
component that the nonlinear Zernike filter is well-approximated by a conventional Zernike filter model (with central spectral 
component phase shift proportional to its intensity).  The analysis presented above for θ  = π/2 also holds for 0 < θ  < π, with 
some additional factors involving cosθ and sinθ appearing, and the fact that θ  changes with time (as the Strehl ratio changes) 
also does not upset the analysis.  To keep the analytical feedback system model manageable, we treat the nonlinear Zernike 
filter as a conventional Zernike filter with a time-varying zero-order spectral component phase shift.  Some of the effects of 
spectral components besides the zero-order component being phase shifted have also been analyzed.16   
 

3. NONLINEAR ZERNIKE FILTER FEEDBACK SYSTEM EXPERIMENTAL RESULTS 
 
3.1. Liquid crystal light valve phase modulator for nonlinear Zernike filter 
 

The key element of the nonlinear Zernike filter is an optically addressed phase spatial light modulator.17  For the 
nonlinear Zernike filter used in the experiments described here, a specially designed optically addressed liquid crystal light 
valve was manufactured.  The schematic of the LCLV is shown in Fig. 3.  The LCLV is based on parallel-aligned nematic 
LC with high refractive index anisotropy, and a transmissive, highly photo-sensitive, amorphous hydrogenated silicon 
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carbide α-SiC:H film with diameter 12 mm and thickness near 1 µm.  The photo-conductive film was fabricated by PeterLab 
Inc. (St. Petersburg, Russia).  The nematic LC has low viscosity and an effective birefringence ∆n =0.27 for λ= 0.514 µm.  
The thickness of the LC layer is 5.2 µm.  

 
 

 
 

Fig. 3. Schematic of the liquid-crystal light valve 
 

The intensity distribution on the LCLV photo-conductor film is transferred to an appropriate spatial distribution of 
the voltage applied to the LC layer.  This results in a corresponding spatially distributed change of the LC molecule 
orientation from planar to homeotropic.18,19  The LCLV is transmissive and operates in a pure phase-modulation mode when 
linearly polarized light with polarization axis parallel to the LC molecule director passes through the LC layer.  The phase 
change θ  = (2π /λ) d∆n introduced by the LCLV is determined by the LC layer thickness d and wavelength λ, and the 
effective LC birefringence ∆n, dependent on such characteristics as the LC type, applied voltage, wavelength of the incident 
light, and temperature. Because the light-generated voltage pattern on the LC layer is dependent on the intensity distribution 
on the photo-conductor film, ∆n is a function of both the intensity IF on the LCLV photo-conductor layer and the amplitude 

of sine wave voltage V applied to the LCLV electrodes.  Correspondingly, the phase shift θ =(2π /λ) d∆n(IF 
,V, λ) introduced 

by the LCLV is also dependent on the intensity IF , applied voltage V, and wavelength λ.  

 
3.2. Feedback system incorporating the nonlinear Zernike filter 
 

A schematic diagram of the experimental setup is shown in Fig. 4.13  The laser beam from the He-Ne laser (12 mm 
diameter) entered the system and sequentially passed through two HEX127 multi-electrode liquid crystal spatial phase 
modulators (SLM1 and SLM2) from Meadowlark Optics.  The HEX127 LC phase modulators contain 127 independently 

controllable, hexagonal LC cells.  SLM1 
was used to correct static random phase distortions introduced by the second phase 

modulator SLM2.  This phase SLM was controlled using a computer (PC2).  The amplitude of the introduced phase 

distortions was in the range of [0, 3π  rad.]. 
   

 

 
 

Fig. 4. Schematic of experimental setup for adaptive wavefront phase distortion compensation using nonlinear Zernike filter. 
 

The phase-distorted wave entered the nonlinear Zernike filter, which contained two identical lenses (L1 and L2) with 

300mm focal lengths, and the optically addressed LC phase modulator (LCLV).  Output intensity from the nonlinear Zernike 
filter was captured by the camera (CCD1) and sent to a computer (PC1), which implemented the feedback algorithm (14) with 
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no diffusion term.  The intensity distribution of the corrected beam in the focal plane of lens L1 was registered by a camera 

(CCD2).  To improve the contrast of the nonlinear Zernike sensor output, the AC bias voltage V applied to the LCLV was 

controlled electronically, thus providing adaptive changing of the phase modulation coefficient α during the adaptation 
process.  The voltage amplitude V was dependent on the computed aperture-averaged variance of the Zernike filter output 
intensity distribution.  This applied voltage amplitude V was decreased from 6 volts at the beginning of adaptation to 2.4 volts 
at the end.  

 
Fig. 5 shows experimental results of adaptive wavefront phase distortion correction in the direct-control system with 

the nonlinear Zernike filter.13  Before adaptation random voltages were applied to the phase modulator (SLM2).  For 

independent analysis of wavefront aberrations during the adaptation process we used a Mach-Zender interferometer (not 
shown in Fig. 4).  An interference pattern corresponding to an initially phase-distorted wave is shown in Fig. 5a.  The initial 
random phase modulation resulted in the random intensity distribution pattern in the lens L1 focal plane, as seen in Fig. 5b.  

Adaptation resulted in compensation of the introduced random phase distortion, except for wavefront tilts.  The interference 
pattern of the wavefront after 34 iterations of adaptive correction is shown in Fig. 5c, and the corresponding intensity 
distribution in the lens focal plane is shown in Fig. 5d.  A factor of eight improvement in the Strehl ratio was obtained for the 
case shown in Fig. 5.  Each iteration took about two seconds, with most of the delay used to ensure that the phase-correcting 
SLM was fully updated between iterations. 

 
 

 
 

Fig. 5. Experimental results for adaptive system with nonlinear Zernike wavefront sensor: (a) interference pattern for the 
aberrated beam, and (b) corresponding intensity distribution in the lens focal plane; (c) and (d) are the same but for the corrected 
wavefront. 

 
 
One of the behaviors observed both experimentally and in simulation for the nonlinear Zernike filter is a winner-

take-all behavior in the Fourier domain.  Fig. 6 shows snapshots of the Fourier spectrum during adaptation for one trial run of 
the experimental nonlinear Zernike filter feedback system.  After 10 iterations, the spectral power has coalesced into several 
peak-intensity components; after 20 iterations, most of the power is concentrated in two components; and after 30 iterations, 
the power is seen to be concentrated in a single spectral component.  This winner-take-all behavior is important for the 
nonlinear Zernike filter, because it means wavefront correction is possible even when the zero-order spectral component of 
the aberrated input beam does not dominate the other spectral components.   For the gradient system sharing the same 
linearized dynamics as the nonlinear Zernike filter feedback system, this winner-take-all behavior can be studied 
analytically.16   
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Fig. 6. Winner-take-all behavior in the Fourier domain for the adaptive system with nonlinear Zernike filter: focal plane intensity 
distribution (a) initially; (b) after 10 iterations, (c) after 20 iterations, and (d) after 30 iterations 

 
 

4. RELATED FEEDBACK SYSTEMS USING ADVANCED PHASE-CONTRAST SENSORS 
 

The primary advantage of the LCLV-based nonlinear Zernike filter is ease of implementation: the only electronics 
required for the wavefront sensor are to provide the bias voltage for the transparent electrodes.   However, better performance 
can potentially be obtained by using an electronically-controlled phase SLM in the focal plane instead of the LCLV.  We 
refer to these systems as opto-electronic Zernike filters.  From measurement of the focal plane intensity distribution (e.g., 
using a photodetector array collocated with the phase SLM, as shown in Fig. 7), a phase-shift distribution could be computed 
for the focal-plane phase SLM which could do a better job of approximating an ideal Zernike phase plate than the LCLV.   
For example, the opto-electronic Zernike filter could be designed to supply a phase-shift of π/2 for whichever spectral 
component had the greatest intensity. 
 

 
 

Fig. 7. Schematic of a phase SLM for an opto-electronic Zernike filter. 
 

Even better performance can potentially be achieved using a “differential” Zernike filter, in which the wavefront 
sensor output is obtained by differencing the intensity distributions corresponding to zero-order spectral component phase 
shifts of π/2 and -π/2.  If input beam wavefront tilts are removed prior to the wavefront sensor, the differential Zernike filter 
can be implemented using a focal-plane phase-shifting device with a single pixel, as shown in Fig. 8.  However, the opto-
electronic phase SLM shown in Fig. 7 could also be used.  The advantage of the differential Zernike filter is that the gradient 
dynamics of equation (7) can be implemented exactly.  Therefore, the convergence behavior of the differential Zernike filter 
is global, while for the nonlinear Zernike filter, only a linearized stability analysis is available.  Futhermore, the convergence 
property of the differential Zernike filter is retained even in the presence of strong intensity scintillations.13 
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Fig. 8. Differential Zernike filter wavefront sensor. 
 
 
 

5. STATISTICAL ANALYSIS OF ZERNIKE-FILTER-BASED ADAPTIVE SYSTEMS 
 

Performance of the adaptive system with a conventional, nonlinear, and opto-electronic Zernike filter was analyzed 
numerically using phase distortions with the Andrews model for atmospheric turbulence-induced phase fluctuation power 
spectra.20  Simulations were performed for an input wave with a uniform intensity distribution and random phase aberration 
ϕ(r) applied inside the aperture D.  The strength of the input phase aberration was characterized by the standard deviation of 

the phase fluctuations averaged over the aperture 2/1221 ])(~[ rr dS ∫−= ϕσϕ  and by the Strehl ratio St. The amplitude of the 

introduced phase distortions was varied by changing the value of the Fried parameter r
0
.21  For each fixed value r

0
, 200 phase 

screens were generated.  A fixed number of iterations N corresponding to the discrete-time wavefront control algorithm (14) 
were performed for each realization of the phase-distorted input field.  Adaptive system performance was evaluated using a 
Strehl ratio value of St

N
 achieved after N iterations.  For fixed Fried radius r

0
 the iteration process was repeated for each of 

200 phase distortion realizations, and the obtained values St
N

  were averaged.  The averaged Strehl ratios < St
N
 > are presented 

in Figs. 9 and 10 as functions of the ensemble-averaged standard deviation of the phase fluctuation σin  = < σϕ > for different 

iteration numbers.  In all calculations, the parameters we used were d=0, K=0.75, µ =1 and u0 =0.  
 
In the nonlinear Zernike filter the phase spatial light modulator placed in the sensor’s focal plane introduces a phase 

shift θ dependent on the focal plane intensity distribution IF(q), i.e., θ  = θ (IF).  In numerical simulations we considered a 

simple model for the phase SLM with phase shift proportional to the focal plane intensity: θ  = α IF, where α is a phase 

modulation coefficient.  Results of the numerical analysis for the corresponding adaptive system are presented in Fig. 9 for 
different phase modulation coefficients α.  The adaptive feedback system based on the nonlinear Zernike filter is capable of 

compensating phase distortions with an amplitude in the range of σin § ��� UDG� ,QFUHDVLQJ α up to α § π / 0
FI  leads to some 

extension of this range, but causes performance degradation in the region 0.5 <σin � ��� UDG: the Strehl ratio is near 0.95 for α 

= π / 0
FI  and near 0.98 for α = 0.5π / 0

FI  (compare curves 3 and 4 in Fig. 9). This suggests a control strategy with coefficients 

α that can be changed during the adaptation process dependent upon the residual phase amplitude. In the region of large-

amplitude phase distortions (σin > 2.0 rad.) the value of α should be near π / 0
FI , or even larger; during the adaptation process 

it should be decreased down to the value α = 0.5π / 0
FI .  (This adaptive adjustment of the phase modulation coefficients was 

used in the experiments described above.) 
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Fig. 9. Simulation results for 10 iterations of the adaptive system with the nonlinear Zernike filter for different phase modulation 

coefficients α: (1) α = 0 (no adaptation); (2) α = 0.25π / 0
FI ; (3) 0.5π / 0

FI ; and (4) α = 1.0π / 0
FI .   

 
 

To put the numerical results for the nonlinear Zernike filter in perspective, Fig. 10. shows corresponding results for 
conventional, opto-electronic, and differential Zernike filter feedback systems.  The opto-electronic Zernike filter model used 
in the calculations corresponded to a π/2 phase shift for the spectral component having the highest intensity level.  In the 
conventional Zernike filter wavefront sensor model, a phase shift of π/2 was applied to the zero spectral component.  
(Although it appears from Figs. 9 and 10 that the conventional Zernike filter system out-performs the nonlinear Zernike filter 
system, these data conceal the fact that for large enough initial wavefront tilts, a practical implementation of the conventional 
Zernike filter will not produce a large enough signal-to-noise ratio for adaptation to begin.) 

 
Figs. 9 and 10 indicate that the differential Zernike filter feedback system is the best-performing system, and the 

opto-electronic and nonlinear Zernike filter feedback systems can be considered as trading off performance for ease of 
implementation.  When input beam intensity scintillations are present in addition to phase distortion, the same tradeoff still 
applies, but the performance differences among the nonlinear, opto-electronic, and differential Zernike filters are more 
dramatic.13  
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Fig. 10.  Averaged Strehl ratio achieved after N iterations of the adaptation process vs. input phase standard deviation for the 
following adaptive system configurations: conventional (dashed lines); opto-electronic (solid lines); differential (solid lines with dots).  
Numbers near curves correspond to the number of iterations N, the curve with N =0 corresponds to K=0 (no adaptation).   
 
 

6. CONCLUSION 
 

The direct-control adaptive optics technique presented here offers an attractive alternative to both the conventional 
phase-conjugation adaptive system22 and adaptive optics based on model-free optimization techniques.23  In comparison with 
the conventional phase-conjugation approach, the direct-control adaptive optics paradigm doesn’t require wavefront 
reconstruction and can be used for high-resolution adaptive wavefront control.  Similar to model-free gradient descent 
optimization techniques, the direct-control approach is also based on gradient descent optimization, but considers gradient-
flow optimization.  This results in dramatic improvement in the adaptation process convergence speed when compared with 
model-free optimization adaptive optics.  The key element of the direct-control adaptive optical system is the wavefront 
sensor, which is not used for wavefront reconstruction as in conventional adaptive optics, but rather for measuring the 
gradient of the optimized cost function (in our case the gradient of the Strehl ratio).  It is shown that wavefront sensors based 
on advanced phase-contrast techniques can provide information about the cost function gradient that can be used for 
synthesis of the gradient-flow feedback controller.  The best adaptive system performance can be achieved using a 
differential Zernike filter, as its output is proportional to the Strehl ratio gradient.  The nonlinear Zernike filter shares the 
same linearized behavior as the differential Zernike filter, but for large phase distortions the non-gradient terms that appear in 
the nonlinear Zernike filter feedback system adversely impact system performance.  
 

A practical implementation of the direct-control adaptive system requires both the development of advanced phase-
contrast wavefront sensors and a very large scale (VLSI) parallel computational controller to interface the wavefront sensor 
and wavefront shaping device.  Analysis and numerical work indicates that the LCLV-based nonlinear Zernike filter can be 
out-performed in an adaptive system by the opto-electronic or differential Zernike filters.  Nevertheless, the LCLV-based 
nonlinear Zernike filter is much more readily implemented for proof-of-concept experiments. 
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