
266 J. Opt. Soc. Am. B/Vol. 17, No. 2 /February 2000 Vorontsov et al.
Spontaneous optical pattern formation in a large
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architectures introduced here on the basis of large-scale arrays of optoelectronic feedback circuits. Experi-
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CCD camera as a photoarray. By synthesizing various nonlinearities and using controllable spatial coupling,
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1. INTRODUCTION
Progress in nonlinear optics, and particularly in the area
of transversal nonlinear optical effects, is very much de-
pendent on the development of new nonlinear materials.
Despite impressive advances recently achieved in this
field, the long-held dream of having optical nonlinearities
that are both strong and fast has yet to be realized. We
still must choose between materials that have either a
strong but slow or a weak but fast nonlinear response.
With a cubic optical nonlinearity, this means that in the
classical dependence n 5 n0 1 n2 I linking the medium
refractive index n to the incident light intensity I, a
higher value of the nonlinear parameter n2 can be
achieved primarily at the expense of having a longer non-
linear response time tnl .1

Researchers in the field of spatiotemporal dynamics are
perhaps the most anxious for strong nonlinearities—large
n2 at any expense—as the most intriguing and remark-
able transversal effects such as spontaneously emerging
optical patterns, solitary structures, waves, and chaotic
regimes occur in wide-aperture optical systems.2 In ad-
dition, most transversal phenomena are extremely sensi-
tive to the quality (uniformity) of the incident-beam in-
tensity and phase profile. In most cases the required
laser beam quality can be achieved only with an addi-
tional increase in the power level.

These buzz words—large n2 at any expense—are not
completely true because formation of optical patterns, lo-
calized states, waves, and other transversal optical insta-
bilities typically occur at transition times on the order of
several hundred tnl . In practice, this bounds the nonlin-
ear response time, since a transition process should
be completed at least during a time psychologically
comfortable for the researcher. If we consider
information–image processing—perhaps the major prom-
ise in nonlinear dynamics—the response time should
be decreased by at least two orders of magnitude. There
are no nonlinear materials that can provide both strong
(n2 . 0.1 cm2/mW) and relatively fast (tnl , 1023 s)
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nonlinear responses, but there are some tricks that can be
used for synthesizing strong optical nonlinearity effects
without the direct use of natural microscopic nonlinear
materials.

In this paper we show that strong optical nonlinearity
effects and optical systems for transversal pattern forma-
tion studies (pattern-forming systems) can be designed
with large-scale arrays of optoelectronic feedback circuits.
A related approach was first implemented in incoherent
pictorial feedback systems (a television camera looking
into its own monitor that was connected with the camera
through a nonlinear digital video processing system).3

Here, the feedback video processing system is used to con-
trol a coherent wave spatial phase distribution. In Sec-
tion 2 we describe a generic hybrid optoelectronic pattern-
forming system that contains an electrically addressed
large-scale (high-resolution) array of phase modulators
coupled with an array of photodetectors through an opti-
cal and electronic feedback loop. Electronic signal–
image processing in the system’s feedback loop allows us
to synthesize not only cubic (Kerr)-type nonlinearity
(practically as strong as we need) but also a variety of
more sophisticated nonlinearities (binary, unimodal, bi-
modal, etc.) that are difficult or even impossible to obtain
with natural microscopic nonlinear materials.

In the experiments performed with a liquid-crystal
television (LCTV) panel as a large-scale array of phase
modulators and a CCD camera as a photoarray, we ob-
served a dazzling variety of static and dynamic optical
patterns, waves, localized states, and chaotic regimes. In
Section 3 we present an overview (taxonomy) of the ob-
served transverse spatiotemporal instabilities (definitely
not yet completed) obtained with different nonlinearity
types.

The approach presented here can be used not only as a
convenient vehicle for the study of self-organization phe-
nomena but also as a practical tool for the generation of
laser beams with controllable spatiotemporal intensity
and phase distributions. In Section 3 we demonstrate a
self-organized controllable array of localized states (spa-
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tial solitons) obtained with the system introduced here
based on large-scale arrays of optoelectronic feedback cir-
cuits.

Problems relating to the design and applications of ar-
tificial nonlinearities with new advanced technologies
such as micro-electro-mechanical systems (MEMS mir-
rors) and analog parallel very large-scale integration
(VLSI) microelectronic systems are discussed in the Con-
cluding Remarks.

2. HYBRID OPTOELECTRONIC PATTERN-
FORMING SYSTEM
A. Nonlinearity Design Aspects
Strong optical nonlinearities for transversal optical pat-
tern formation can be synthesized using optically ad-
dressed spatial light modulators (OASLM’s) based on
various electro-optical effects.4 In a typical phase
OASLM, the output wave spatial phase modulation is de-
pendent on the light intensity illuminating the OASLM’s
photoconductive layer (controlling light).4 In an optical
two-dimensional (2D) feedback-system configuration the
output wave is also used as a controlling light. In this
case the dependence of wave-front modulation on beam
intensity is similar to that of a microscopic media with cu-
bic nonlinear response. Thus the phase OASLM in a 2D
feedback configuration can be considered as a thin nonlin-
ear slice modeling a cubic optical nonlinearity (Kerr slice).
This approach was first implemented in pattern-forming
systems that use a liquid-crystal light-valve (LCLV)
phase modulator.5 The equivalent nonlinear parameter
n2 for a LCLV feedback system can exceed 0.1 cm2/mW
with a typical time response of tnl ; 0.1 s. At present
LCLV feedback systems are widely used to study a vari-
ety of transversal nonlinear effects.6

The use of optically addressed phase spatial light
modulators as the nonlinear element in pattern-forming
systems has several limitations. Physical processes that
occur in these types of optoelectronic devices are complex,
and the commonly used Kerr-type models describing
OASLM dynamics are quite simplified.4 This compli-
cates understanding and interpretation of the transversal
effects most often observed in experiments. Further-
more, optically addressed phase modulators have a rela-
tively large time response (tnl ; 0.1 s) and typically suf-
fer from a notable level of parasitic phase modulation
(phase noise) related to nonuniformities in the photocon-
ductive layer.4 Perhaps the major drawback of both
OASLM-based and purely optical pattern-forming sys-
tems is the lack of flexibility for implementation of the dif-
ferent nonlinearity types typically required for specific
nonlinear dynamics applications.7 With nonlinear mate-
rials the type of nonlinearity is a built-in form of a specific
light–matter interaction mechanism, and in OASLM de-
vices the type of nonlinearity depends on the electroopti-
cal effect used.

B. Large-Scale Array of Optoelectronic Feedback
Circuits: System Architecture and Models
Recent advances in microelectronics, in particular in the
areas of analog parallel VLSI computational systems,8

large-scale (high-resolution) arrays of MEMS mirrors,9
and liquid-crystal (LC)-on-silicon phase modulators,10

have made practical implementation of novel optical
pattern-forming system architectures with large-scale ar-
rays of optoelectronic feedback circuits possible.7 The
general concept of a hybrid optoelectronic pattern-
forming system is shown in Fig. 1. A coherent input op-
tical wave with complex amplitude A0(r) (r 5 $x, y% is a
vector in the transverse plane) is reflected from an array
of microactuators (micromirrors or LC cells). The num-
ber of microactuators N in an array may exceed
105 –106.11 Microactuators introduce a controllable
phase modulation u(r, t). The depth of phase modula-
tion is dependent on the controlling signal n(r, t) formed
by an electronic (analog or digital) feedback signal pro-
cessing system: u(r, t) 5 U@n (r, t)#, where U is an op-
erator describing dynamics of an individual actuator.
For the sake of simplicity, consider here a linear depen-
dence: u(r, t) 5 gn(r, t), where g is a constant.12

Reflected from the microactuator array, the phase-
modulated wave A(r, t) 5 A0(r)exp@i u(r, t)# enters the
feedback loop that contains both optical and electronic
signal processing systems as shown in Fig. 1. The optical
signal processing system’s output intensity Id(r, t) is reg-
istered by a photoarray interfaced with an electronic feed-
back signal processing system. We assume that the mi-
croactuator and photoarrays are optically matched; that
is, they have the same size and pixel geometry.

The entire system spatiotemporal dynamics depend on
the type of signal processing realized in the system feed-
back loop. Consider the following model that can be
implemented with specially designed parallel image pro-
cessing hardware—analog VLSI or digital signal process-
ing systems:
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Fig. 1. Schematic for a pattern-forming system based on a
large-scale array of optoelectronic feedback circuits.
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Electronic feedback signal processing is characterized by
the nonlinear diffusion model [Eqs. (1) and (2)] commonly
used in transversal nonlinear optics.13 In Eq. (1) t is the
characteristic time scale, d is a diffusion coefficient, and K
is a feedback gain coefficient. The convolution integral in
Eq. (2) with a kernel h(r) describes local spatial coupling.
The dynamical model [Eqs. (1) and (2)], including both
diffusion and convolution operators, can be implemented
in parallel form on an analog VLSI system.8,14 Optical
processing is described by Eq. (3), where O is an operator
applied to the output optical wave complex amplitude
A(r, t).

The dependence of the feedback signal wFB(r, t), and
hence the wave-front modulation u(r, t) on the registered
intensity Id(r, t), is described by the function F in Eq.
(2). Thus the function F designates the characteristic
optical nonlinearity type. The Kerr nonlinearity corre-
sponds to linear dependence: wFB(r, t) 5 bId(r, t),
where b is a coefficient. Parameter nFB 5 g bK coupling
phase and intensity modulations @u(r, t) 5 nFB Id(r, t)#
can be considered a characteristic nonlinear coefficient
similar to n2 in materials with cubic response. In the hy-
brid optoelectronic feedback system, the nonlinear pa-
rameter can be giant (nFB . 1 cm2/mW).

C. Optoelectronic Kerr-Slice–Feedback-Mirror System
Consider first optoelectronic implementation of the Kerr-
slice–feedback-mirror system, which is a well-studied
nonlinear optical system with cubic nonlinearity.15,16

The system schematic is essentially the same as shown in
Fig. 1, except that the optical processing system contains
only a free-space propagation path of length L. Wave dif-
fraction over the distance L provides spatial optical cou-
pling between the array of microactuators and the photo-
array. For the optoelectronic Kerr-slice–feedback-mirror
system, the general model [Eqs. (1)–(3)] can be repre-
sented in the following form16:
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where k 5 2p/l is wave number and A(r, z 5 0, t)
5 A0(r)exp@iu(r, t)#. Wave diffraction is described by
Eq. (6).

D. Experimental Setup
The scheme of the experimental setup for the Kerr-slice–
feedback-mirror-type pattern-forming system based on
large-scale arrays of optoelectronic circuits is shown in
Fig. 2. For the phase actuator array (phase spatial light
modulators), we used a twisted nematic LCTV panel from
an Epson Crystal Image video projector operated in the
phase modulation mode. The LCTV panel has N 5 320
3 220 pixels with a clear aperture of 26 3 20 mm, pixel
size of 60 3 55 mm, and pixel pitch of 90 3 80 mm. A
CCD camera (Panasonic closed circuit television) having
771 3 492 pixels within an active area of 4.82 3 3.64
mm was used as the photoarray. The optical processing
shown inside the dashed box in Fig. 2 includes a lens sys-
tem with the diaphragm D located in the lenses’ common
focal plane. The lens system decreased the input beam
size by a factor of M 5 8 in the rear focal plane of lens L2
(z 5 0). The original beam size (;20 mm) was de-
creased to provide an approximate match between the
LCTV and CCD active area sizes (an additional image
scaling was performed digitally). Diffraction of the
phase-modulated wave occurred between the plane
z 5 0 and the plane of the CCD camera imaging chip
(z 5 L). The diffraction length L was on the order of
8–14 mm.

The electronic signal processing system consisted of an
EPIX image processing system based on a personal com-
puter (PC1) and a second computer (PC2) that controlled
the LCTV panel electronic driver. The LCTV panel was
located in the front focal plane of lens L1 . The depth of
the introduced phase modulation u(r, t) was dependent
on the controlling signal n(r, t) measured in video signal
gray levels. The controlling signal n(r, t) was formed
through digital processing of the intensity distribution
Id(r) as registered by the CCD camera and then sent to
the LCTV panel. The LCTV driver was adjusted so that
the phase modulation characteristic u(r, t) 5 U@n(r, t)#
was close to linear u(r, t) 5 g n (r, t) as shown in Fig. 3.
The characteristic nonlinearity coefficient nFB was on the
order of 1 cm2/mW.

The feedback digital signal processing included compu-
tation of the controlling signal n(r, t) applied to the
LCTV panel. The computation was performed with the
following discrete-time approximation of the dynamical
model [Eqs. (1) and (2)]:
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(7)

wFB
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where n (n)(r), wFB
(n)(r), and Id

(n)(r) are the controlling and
feedback signals and the feedback intensity at the nth it-
eration, respectively, D'

(n) is a symbolic representation for
the discretized Laplacian operator, and 0 , a , 1 is a co-
efficient.

Fig. 2. Experimental setup of the pattern-forming system. The
focal lengths corresponding to lenses L1 and L2 are f1 5 1000
mm and f2 5 125 mm.
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For solution of the nonlinear diffusion equation (7), we
used the alternating directions method.17 To keep phase
modulation in the operational range of the LCTV panel
(0–255 gray levels), the aperture minimum value
min

x, y
n (n11)(r) was subtracted from the obtained

signal n (n11)(r). The convolution integral in Eq. (8) was
calculated with the spectral representation of Eq. (8):
WFB

(n)(q) 5 F$F@Id
(n)#%H(q), where q is spatial frequency,

WFB
(n)(q) and H(q) are the spatial spectral amplitudes for

wFB
(n)(r) and h(r), and F$ % is the Fourier transform opera-

tor. The transfer function H(q) used in our calculations
corresponded to a low-pass spatial filter with cutoff fre-
quency qcut : H(q) 5 exp@2uqu/qcut)

8] (super-Gaussian
filter). Along with digital filtering, we also used a low-
pass optical Fourier filter. In this case,

Id~r, t ! 5 U E A~r8, z 5 L, t !hopt~r 2 r8!d2r8U2

, (9)

where hopt(r) is the Fourier transform of the optical low-
pass filter. Optical feedback processing included free-
space propagation [Eq. (6)] and Fourier filtering [Eq. (9)].

3. OPTICAL PATTERN FORMATION IN THE
OPTOELECTRONIC FEEDBACK SYSTEM
A. Kerr-Type Nonlinearity: Hexagonal Patterns
The hexagonal patterns emerging in a purely optical
Kerr-slice–feedback-mirror system provide an excellent
proof-of-concept test for the optoelectronic pattern-
forming system. The following discrete-time approxima-
tion for the continuous model [Eqs. (4)–(6)] was used in
experiments:

n~n11 !~r! 5 ~1 2 a!n~n !~r!

1 dD'
~n !n~n !~r! 1 KId

~n !~r!. (10)

Fig. 3. Characteristic phase modulation of the LCTV panel.
For the case of spatial filtering we also used the signal
processing model [Eqs. (7) and (8)] with linear depen-
dence F@Id

(n)# 5 gId
(n) as presented by line 1 in Fig. 4.

In the absence of both digital and optical spatial filter-
ing the system was unstable if the feedback gain coeffi-
cient K exceeded a threshold value Kth . When uKu was
increased above Kth , we observed a spontaneous transi-
tion from a spatially uniform intensity distribution to-
ward hexagonal patterns and then further to disordered
patterns similar to what was reported in Kerr-slice–
feedback-mirror systems with purely optical nonlinear
media, or in LCLV-based feedback systems.18 The hex-
agonal transversal optical patterns—diffractive intensity
and controlling patterns [phase images u(r)]—are shown
in Fig. 5. The bright spots in the hexagonal pattern in
Fig. 5(b) cover approximately four pixels of the LCTV
panel. Dependent on the sign of the feedback gain coef-
ficient K, we observed hexagonal patterns typical for both
self-defocusing and self-focusing cases. Spatial nonuni-
formity of the LCTV transmittance (;10–15% across the
aperture) as well as a residual (noncompensated) mis-
match between image sizes in the LCTV panel and CCD
array planes resulted in dislocations of the hexagonal pat-
tern in Fig. 5. Stable hexagonal patterns were obtained
only for relatively small values of the update coefficient
a , 0.2 in Eq. (10). For a . 0.2, approximation of the
continuous-time equation (4) by the discrete model [Eq.
(10)] is not stable, which results in the disintegration of
hexagons and the appearance of traveling wave-type in-
stabilities.

The pattern formation process appeared to be rather
sensitive to the alignment of optical components with
small misalignment, leading to motion of the entire hex-
agonal pattern. We also examined dynamics of the opto-
electronic Kerr-slice–feedback-mirror system without dif-
fusion (d 5 0). For this case local spatial coupling was
introduced by use of digital or optical low-pass spatial fil-
ters. Stable hexagonal patterns similar to those shown

Fig. 4. Nonlinearity types used in the experiments: (1) linear
dependence between intensity and phase corresponding to Kerr-
type nonlinearity; (2) binary nonlinearity; (3) unimodal (Gauss-
ian) nonlinearity; and (4) bimodal (sine-type) nonlinear function.
Both the input diffractive intensity and the transformed signal
F(Id) are measured in video signal gray levels.
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in Fig. 5 were observed for the spatial filter cutoff fre-
quency qcut . q1 ,where q1 is a critical spatial filter ra-
dius determined from linear stability analysis: q1
5 pA2(lL)21/2 for self-focusing and q1 5 pA3(lL)21/2

for self-defocusing.16 For qcut slightly less than q1 , we
also observed square-type periodical patterns.

B. Kerr-Type Nonlinearity with Field Rotation: Optical
Quasi-Crystals
Consider pattern formation in the hybrid optoelectronic
system having azimuthal field rotation in the optical feed-
back. Field rotation in the 2D feedback loop represents
an example of long-range spatial coupling. Long-range
spatial coupling in transversal nonlinear optics was first
introduced in the LCLV-based nonlinear interferometer
with 2D feedback.5,19 More recently, 2D feedback field
rotation was combined with diffraction (LCLV-based dif-
fractive feedback system with field rotation).20 These
types of systems have displayed a vast range of static and
dynamics spatiotemporal instabilities (rotary waves,
quasi crystals, pattern competition, chaotic regimes).20,21

In the system shown in Fig. 2, azimuthal field rotation
was implemented by rotation of the CCD camera at a
fixed angle D around the system’s optical axes. The in-
tensity registered by the CCD camera can be represented
in a cylindrical coordinate system as Id

(n)(rD), where rD

5 $r, u 1 D% is a vector in the plane of the camera. In
the system with field rotation the electronic feedback sig-
nal processing equation (10) reads as

n~n11 !~r! 5 ~1 2 a!n~n !~r! 1 dD'
~n !n~n !~r! 1 KI d

~n !~rD!.
(11)

To control the feedback signal spatial spectrum content,
we used an optical low-pass spatial filter. The size of the
filter’s diaphragm was adjusted to block all except the

Fig. 5. Hexagonal patterns in optoelectronic Kerr-slice–
feedback-mirror system corresponding to (a), (b) self-defocusing
nonlinearity (nFB , 0) and (c), (d) self-focusing nonlinearity
(nFB . 0); (a), (c) diffractive beam intensity patterns Id(r); and
(b), (d) corresponding controlling images n (r) sent to the LCTV
panel (phase images). The laser beam diameter in the plane of
the LCTV equals 20 mm. System parameters are L 5 8 mm,
uKu > 1.2 Kth , d 5 0.0001, a 5 0.1.
lowest instability band. By varying the system param-
eters (feedback gain coefficient, rotation angle, and filter-
ing diaphragm size), we obtained a variety of self-
organized nonlinear patterns. In the experiments we
also observed pattern competition, periodic and chaotic
alternation, and chaotic spatiotemporal regimes. An ex-
ample of pattern alternation obtained in the system with
field rotation for self-focusing Kerr-type nonlinearity is
shown in Fig. 6. The pattern alternation consisted of a
repeating sequence of quasi-stationary patterns. Pattern
alternation has been analyzed both in nonlinear systems
with macroscopic nonlinearities (photorefractive ring
oscillator22) and in LCLV systems.23 In the experiments
with the optoelectronic feedback system, we observed al-
ternating sequences that contained from three to ten dif-
ferent quasi-stable patterns—only three patterns are pre-
sented in Fig. 6. Note that similar dynamics were also
obtained that used electronic feedback with diffusion in-
stead of optical low-pass filtering.

C. Binary Nonlinearity: Localized States
It has been recently demonstrated that several nonlinear
optical systems are capable of generating a set of inten-
sity peaks in a laser beam cross section known as diffrac-
tive autosolitons, spatial solitons, or localized states—

Fig. 6. Chaotic alternation between different transversal quasi-
stable patterns observed in the experiment with feedback field
rotation. The diffractive intensity patterns (a), (c), and (e) and
the corresponding phase images (b), (d), and (f ) are shown in
their order of consecutive appearance: (a), (b) n 5 400; (c), (d)
n 5 640; (e), (f ) n 5 720. The system parameters are D 5 30
deg., a 5 0.2, d 5 0, K 5 0.1, L 5 8 mm, I0 5 97. The input
intensity I0 here and below corresponds to an aperture-averaged
value measured in the CCD camera in video signal gray levels.
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other terms are also used.24 To designate these intensity
peaks and avoid potential terminological problems, we
use localized states (LS’s) as the most general term. The
simplest optical system having LS’s as a steady-state pat-
tern consists of a binary-phase slice and a feedback mir-
ror. Binary-type (stepwise) nonlinearity has been intro-
duced as a model of microscopic nonlinearities with
strong saturation when transition between unsaturated
and saturated levels occurs within a narrow interval of in-
tensity change for the refractive index in a nonlinear
medium.25 Theoretical analysis and numerical simula-
tions of the binary-phase slice and feedback-mirror model
predicted the existence of LS’s whose arrangement de-
pends on input beam spatial intensity and phase modula-
tion. These LS properties have the potential to be used
for nonlinear image processing.25

Consider implementation of the binary-slice–feedback-
mirror model with the hybrid optoelectronic feedback sys-
tem shown in Fig. 2. The optical processing included
only free-space propagation over the distance L. Elec-
tronic signal processing was based on Eqs. (7) and (8)
with stepwise function F shown by curve 2 in Fig. 4.

LS’s were experimentally observed for a negative feed-
back gain coefficient K in the presence of a low-pass spa-
tial filter having the relatively narrow bandwidth 0.4q1
, qcut , 0.85q1 . Typical patterns for LS’s are shown in
Figs. 7(a) and 7(b). The LS’s have formed clusters as
seen in Fig. 7(a). The number of LS’s in a cluster was
dependent on either the input intensity or the feedback
gain coefficient. The LS position depends on local modu-
lation of the input beam phase or intensity or both. The
LS’s in Figs. 7(a) and 7(b) are grouped along the inhomo-
geneities of the input beam intensity resulting from para-
sitic intensity modulation introduced by the LCTV panel.

D. Unimodal Nonlinearity: Web-Pattern and Black
Holes
Flexibility in nonlinearity choice is one of the major ben-
efits of the optoelectronic pattern-forming system. Arti-
ficial nonlinearities synthesized in the optoelectronic
feedback loop may dramatically enrich the palette of non-
linear spatiotemporal phenomena. A simple example of
artificial nonlinearity is provided by the unimodal func-
tion F shown by curve 3 in Fig. 4.

The system with unimodal nonlinearity displayed spec-
tacularly rich dynamics. For a positive feedback gain co-
efficient K and electronic spatial filtering, we observed
LS’s as shown in Figs. 7(c) and 7(d). In contrast, with the
case of binary nonlinearity the LS’s did not form clusters
but merged under collision. The LS position can be con-
trolled by the introduction of a small phase modulation
(seed phase pattern) as discussed in Ref. 26. In the ex-
periment the hexagonal-type phase seed-image shown in
Fig. 8(b) was introduced as an additional driving signal
applied to the LCTV panel. This seed phase-image re-
sulted in the formation of a self-organized array of LS’s in
Fig. 8(a). Note that the technique can be applied to cre-
ate controllable and self-adaptive diffractive optics ele-
ments in place of a conventional microlens array.27

The case of negative K is particularly interesting.
When the input beam intensity was increased, we ob-
served a consecutive transition from the loosely organized
pattern in Figs. 9(a) and 9(b) to the web pattern in Figs.
9(c) and 9(d) and further to a set of black holes in Figs.
9(e) and 9(f ). The formation of the web pattern occurred
through a cascade of web-cell division bifurcation. The
size of the cells corresponding to a stationary-state web
pattern was dependent on the electronic spatial filter cut-
off frequency. Patterns similar to those shown in Fig. 9
were observed in the system with electronically intro-

Fig. 7. Intensity pattern of localized states (left-hand column)
and phase patterns (right-hand column) obtained in the pattern-
forming system with the nonlinearity types shown in Fig. 4: (a),
(b) binary; (c), (d) unimodal (Gaussian); and (e), (f ) bimodal
(sine-type). Spatial filter cutoff frequencies are qcut 5 0.7q1
for binary, qcut 5 0.4q1 for unimodal, and qcut 5 0.5q1 for bimo-
dal nonlinearities. Here and below q1 5 pA3(lL)21/2. The in-
put intensities are (a), (b) I0 5 82; (c), (d) I0 5 111; and (e), (f )
I0 5 120. System parameters are d 5 0, a 5 0.2, K 5 0.1, L
5 12 mm.

Fig. 8. Self-organized array of localized states (a) in the system
with unimodal nonlinearity in the presence of the external phase
modulation (b) [seed pattern]. The amplitude of phase modula-
tion in the seed pattern comprises 8% of the LCTV panel dynami-
cal range. The system parameters are the same as in Figs. 7(c)
and 7(d).
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duced diffusion and with the use of a purely optical low-
pass filter.

E. Bimodal Nonlinearity: Black-Eye Array, Localized
States, Chaotic Regimes
Bimodal nonlinearity as shown by a segment of the sine
function in Fig. 4 (curve 4) represents one more example
of an artificially created phase-intensity dependence.
The bimodal (N- or S-shape) nonlinearity is one of the cor-
nerstones in modern nonequilibrium system theory and
synergetics.28 The dynamical model [Eqs. (1) and (2)]
with bimodal-type nonlinear function represents an ex-
ample of nonlinear diffusion or a Fisher–Kolmogorov–
Petrovskii–Piskunov (FKPP)-type equation, widely used
in nonlinear dynamical systems in optics, chemistry, and
biology.29 In the optoelectronic pattern-forming system
the FKPP process is used in conjunction with wave dif-
fraction and can be described by a coupled nonlinear
diffusion–diffraction-type model.30

In the experiments we used both optical and electronic
spatial filtering that was applied instead of diffusion. In
most cases we obtained similar dynamics as in the case of
pure diffusive spatial coupling. For a positive feedback
gain coefficient and relatively narrow low-bandpass filter-
ing, we observed extraordinary LD’s as shown in Figs.
7(e) and 7(f ). Intensity peaks in Figs. 7(e) and 7(f ) have

Fig. 9. Pattern formation in the system with unimodal nonlin-
earity. Intensity (left-hand column) and phase (right-hand col-
umn) patterns for different input beam intensity I0 values mea-
sured in the CCD camera in video signal gray levels: (a), (b)
disordered bright spots, I0 5 55; (c), (d) web pattern, I0 5 97;
and (e), (f ) black holes, I0 5 140. The system parameters are
qcut 5 0.6q1 , L 5 12 mm, d 5 0, a 5 0.2, and K 5 20.1.
two distinct intensity levels: warm and hot spots. The
hot spots always belonged to lines, and the warm spots
existed alone.

The most remarkable spatiotemporal phenomena were
observed in the system with a negative feedback gain co-
efficient and with a wide-band low-pass spatial filter.
When the input intensity level (or the feedback gain coef-
ficient) was increased, the spatially uniform intensity and
phase pattern became unstable, giving rise to the black-
eye phase pattern shown in Fig. 10(a). A further in-
crease in intensity leads to the development of a chaotic
intensity and phase modulation as seen in Figs. 10(c) and
10(d). The chaotic regime exists in a relatively narrow
intensity window, and as intensity was further increased,
black eyes returned in the form of LS’s [Figs. 10(e) and
10(f )].

4. CONCLUDING REMARKS
The system introduced here with optoelectronically (arti-
ficially) designed optical nonlinearity can be considered as
a hybrid optoelectronic computer that combines two sig-
nal processing paradigms: continuously distributed opti-
cal processing and discrete electronic (analog or digital)
computations. Both the input and output signals are

Fig. 10. Pattern formation in the system with bimodal nonlin-
earity. Intensity (left-hand column) and phase (right-hand
column) patterns for different input beam intensity I0 values
measured in the CCD camera in video signal gray levels: (a), (b)
black-eye array, I0 5 70; (c), (d) chaotic pattern, I0 5 134; and
(e), (f ) black-eye localized states, I0 5 200. The system param-
eters are qcut 5 4.0q1 , L 5 12 mm, d 5 0, a 5 0.2, and K
5 20.1.
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real optical fields interfaced with a discrete signal pro-
cessing system through high-resolution arrays of phase
actuators and sensors.

With the recent development of systems having large
arrays of milli- and microscale actuators and sensors
(smart and adaptive structures), problems related to the
control of such structures become important. Control is
based on local information received by the sensor array.
Through a large array of feedback circuits, this informa-
tion is used to compute the actuator’s control signals.
Spatiotemporal instabilities that can potentially arise in
such systems are an important issue. Design, optimiza-
tion, and stability analysis of parallel feedback-control ar-
chitectures for smart structures are emerging in a num-
ber of areas: optics, acoustics, biomedicine, hydro-
dynamic, etc. A good example is the control of fluid–
structure interaction based on large arrays of MEMS ac-
tuators and sensors.31

In comparison with other fields, in optics we actually
have the most advanced tools for prototyping, modeling,
and analyzing the dynamics of structures composed of
large arrays of actuators and sensors interfaced through
feedback circuits. In the proof-of-concept experiments
described here, we used commercially available building
blocks—the LCTV panel, CCD camera, and PC
computer—hardware that is definitely not optimal. The
low operational speed (;1.2 s per iteration)—a major
drawback of this system—resulted from the mismatch be-
tween the size and number of pixels of the LCTV panel
and CCD camera. This mismatch required time-
consuming digital scaling of the registered intensity pat-
terns. With customer-designed phase actuators and sen-
sors arrays, this problem can be overcome.

With currently available large-scale arrays of MEMS
mirrors optically coupled with photoarray and analog par-
allel VLSI systems for feedback signal processing, the
characteristic system response time can be less than 1023

s with a spatial resolution of the order of 512 3 512 or
even 1024 3 1024 elements. This could potentially pro-
vide small, efficient hybrid optoelectronic computational
architectures for modeling and studying a variety of com-
plex nonlinear spatiotemporal phenomena. These sys-
tems can also be used for the generation of complex opti-
cal field structures, parallel image processing, and in
adaptive optics applications.
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