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Abstract. Spontaneous pattern formation and competition in a nonlinear ring cavity are
studied. Complex patterns arising from static and Hopf bifurcations and Hopf–static
interactions have been numerically observed and analysed. Among them are flower-like
patterns, alternating rolls and oscillating hexagonal structures.
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1. Introduction

Spontaneous pattern formation in nonlinear systems far from
equilibrium is currently a topic of considerable interest
in many branches of physics [1]. In general, there are
two types of bifurcations, Turing (static) and Hopf, which
give rise to spontaneous static and dynamical patterns from
a homogeneous state respectively. In many nonlinear
systems, the two bifurcations can exist and, depending on
the control parameters of the systems, one may dominate
the other [2–4]. In both situations, simple periodic patterns,
such as travelling wave and hexagons, can develop into
complex spatial structures on variation of the parameters,
due to the presence of the increasing number of active
modes [4–10]. On the other hand, in certain parameter
domains, the threshold for the two bifurcations may be
comparable and, as a result, modes from static and Hopf
domains can be active simultaneously. The interaction and
competition between static and Hopf instabilities lead to
new types of pattern forming phenomena. There are many
recent studies of these phenomena in nonlinear systems of
a different nature [3, 4, 8, 9]. In optical studies, a typical
example is winking hexagons in a single-feedback-mirror
configuration [9] due to the resonant interaction between two
hexagonal triads of the spatial modes. As a rule, for pattern
selections, these modes must satisfy the spatiotemporal phase
matching conditions.

In this paper, we study pattern formation and competition
in a nonlinear ring cavity. Both static and Hopf instabilities
are found to exist in this system and the latter dominates
the former on increasing the delay time of the cavity loop.
We show a variety of pattern formations in both static and
Hopf domains, including flower-like patterns, due to the
interaction of modes with different spatial wavelengths, and
an alternating roll arising from competition between rolls of
the same wavelength but with different orientations. When
both static and Hopf modes are active and compete, we
observe oscillating hexagonal structures.

2. Mathematical model

The scheme of the passive nonlinear system is shown in
figure 1. The ring cavity that is formed by four mirrors is
driven by a plane wave. Our mathematical model takes into
account a Kerr-type local nonlinear interaction between a
light wave and the thin medium with instantaneous response.
The transverse interactions arise from the diffusion of the
nonlinear slice and diffraction of the light in the resonator.
We note that, different from the single pass two-dimensional
feedback setting based on a LCLV device [10, 11], the
feedback loop in this system is a multi-pass type, which
gives rise to richer dynamical features compared with the
former configuration. The phase modulation u(r, t) of the
propagating light wave in the nonlinear slice is described by
the following partial differential equation:

τ0
∂u(r, t)

∂t
+ u(r, t) = D∇2

⊥u(r, t) + K|A(r, z = 0, t)|2
(1)

where r = (x, y) is the radius vector in the transverse plane,
t is the time coordinate and τ0 is the characteristic relaxation
time of the nonlinearity. D is the diffusion coefficient
related to the diffusion length of the nonlinear medium, ∇2

⊥
the transverse Laplacian and K is the feedback coupling
coefficient. A(r, z = 0, t) is the complex amplitude of the
intracavity field just before the nonlinear medium.

The field after the nonlinear layer experiences a free-
space diffractive propagation in the cavity. This process is
described by an ordinary free-propagation equation in the
paraxial approximation

−2ik0
∂A(r, z′, t ′)

∂z′ = ∇2
⊥A(r, z

′, t ′) (2)

and two boundary relations of the fields:

A(r, z′ = l, t ′) =A(r, z′ = 0, t ′) exp[iu(r, t ′)]

A(r, z′ = 0, t ′) =√
1 − RAin(r)

+ Reiϕ0A(r, z′ = L, t ′)

(3)
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Figure 1. A scheme of the passive nonlinear ring resonator.
M1–M4 are mirrors with reflectivity coefficients R1 = R2 = R and
R3 = R4 = 100%, NL is the nonlinear medium, L is the resonator
length, Ain and Aout are complex amplitudes of input and output
fields, respectively.

where l is the thickness of the nonlinear slice, which is
thin and negligible, k0 = 2π/λ is the wave number, L

is the resonator length and R the reflectivity coefficient
of mirrors 1 and 2. ϕ0 is a constant phase shift of the
light wave in the resonator, τR the cavity roundtrip time
and Ain(r) the complex input field amplitude. Note that
equations (2) and (3) are written in retarded time variables
{z′ = z, t ′ = t − z/c} and equation (1) is the same whether
the variables are retarded or not, since the thin slice is
considered. Combining equations (1)–(3), we obtain the
following working equations:

∂u(r, t)

∂t
+ u(r, t) = D∇2

⊥u(r, t) + K|A(r, t)|2 (4)

A(r, t) = √
1 − RAin + Reiϕ0 exp(iL∇2

⊥){A(r, t − tR)

× exp[iu(r, t − tR)]} (5)

where a0 is the radius of the aperture. We have renormalized
these variables r ≡ r/a0, D ≡ D/a2

0 , L ≡ L/2k0a
2
0 ,

t ≡ t ′/τ0, tR ≡ τR/τ0, Ain(r) ≡ Ain and A(r, z′ = 0, t ′) ≡
A(r, t ′).

3. Linear stability analysis

3.1. Steady-state solution

Equations (4) and (5) admit a spatially homogeneous
stationary solution. Denoting by us and As the stationary
values of u(r, t) and A(r, t), respectively, we have

us = (1 − R)KIin

1 + R2 − 2R cos(us + ϕ0)
(6)

where us = K|As |2 and Iin = |Ain|2. Equation (6) describes
the phenomenon of multistability of the homogeneous
stationary state of phase us . In the paper, however, we will
work in the area of single-valued dependence of us with Iin

for periodical pattern formations.

3.2. Linear stability analysis

For this purpose we perturb the steady-state solution As and
us with δu(�r, t) and δA(�r, t) and linearize equations (4)

and (5) with respect to these perturbations:

∂

∂t
δu(r, t) + δu(r, t) = D∇2

⊥δu(r, t)

+ K[A∗
s δA(r, t) + AsδA

∗(r, t)]

δA(r, t) = Reiϕ0 exp(iL∇2
⊥)[δA(r, t − tR)

+ iAsδu(r, t − tR)] exp(ius).

Expressing the perturbation in a form of spatially
modulated wave, δu(r, t) = δu0 exp(ik⊥r)eλt , δA(r, t) =
δA0 exp(ik⊥r)eλt , we derive a characteristic equation for
determining parameter domains in which spatial pattern
formation emerges from a homogeneous state. Here k⊥ =
(kx, ky) is the transverse wavevector, λ is the perturbation
amplification rate. The characteristic equation has the
following form:
(

1 + λ +
D

L
θ

)
+

2Rus sin(us + ϕ0 − θ)

eλtR + e−λtRR2 − 2R cos(us + ϕ0 − θ)

= 0 (7)

where θ = k2
⊥L is the diffraction parameter.

The boundaries of the instability domains in the plane
(θ, us) are determined by Re (λ) = 0 in equation (7).
Substituting λ ≡ λ + iω into equation (7) and separating real
and imaginary parts of the equation, we obtain for λ = 0:




(
1 +

D

L
θ

)
[(1 + R2) cos(ωthtR)

−2R cos(uth
s + ϕ0 − θ)]

−ωth(1 − R2) sin(ωthtR) + 2Ruth
s

× sin(uth
s + ϕ0 − θ) = 0

ωth[(1 + R2) cos(ωthtR) − 2R cos(uth
s + ϕ0 − θ)]

+

(
1 +

D

L
θ

)
(1 − R2) sin(ωthtR) = 0.

(8)

Typical dependences of uth
s (θ) are periodical with the

period equal to 2π . Figures 2(a)–(d) show the first period in
which there are two kinds of instability domains, static (or
Turing) and Hopf. In general, the static domains (ω = 0) are
independent of the delay time tR whereas the Hopf domains
(ω �= 0) are absent at tR = 0. Equation (8) has an infinite
number of roots for ω �= 0 and the threshold values uth

s

for these roots decrease with the increase of tR . This can
be seen when comparing figure 2(a) with figure 2(c). The
Hopf domains may be separated into odd and even families
in terms of their symptomatic frequencies for tR → ∞: odd
for ωthtR → ±(2n − 1)π and even for ωthtR → ±2nπ ,
n = 1, 2, . . . . Furthermore, for tR → ∞, all the instability
domains have the same shape. Note that figures 2(b) and (d)
are symmetrical on the horizontal axis. The instability
domains can move along the horizontal axis on the variation
of the control parameters R and ϕ0. Because of this, the
relative placement of the Hopf and the static domains can
be altered, which gives us a greater possibility of selecting
different pattern formations.
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Figure 2. The bifurcation diagrams for R = 0.8, ϕ0 = π and D/L = 0.025. tR = 2 for traces (a) and (b) and tR = 5 for traces (c) and (d).
The solid curves in (a) and (c) mark the static instability domains with ω = 0, whereas the dashed curves give Hopf instability boundaries.
Odd families are marked by ‘o’ and even families are noted by ‘e’; their corresponding frequencies are given in trace (b) and (d).

4. Numerical results and analysis

4.1. Static structures

For relatively short delay, as in figure 2(a), the static
instabilities dominate. In this case the formation of numerous
static patterns takes place beyond the threshold. Formation of
the simplest structures, such as the hexagon and the roll, occur
due to mode interaction within one instability domain. For
this case the number of amplitude equations, which describe
the dynamics of these patterns, can be reduced to three for
the most unstable static modes. However, on increasing the
input intensity or decreasing the value D/L, the number
of active modes from other instability domains can join in
the pattern forming process, as shown in figure 3(a) for five
static instability domains, and simple periodic patterns can
develop into complex spatial structures. For example, if the
excitation condition is fulfilled for two neighbouring static
instability domains, spatial patterns, such as an interlaced
pattern or a dodecagon, may form in the system [6, 7].
Here the resonant conditions between wavevectors from
different domains play an essential role in determining which
modes are presented in these patterns. The resulting pattern
is a product of competition between basic and complex
structures. From an instability point of view, it seems that a
further increase in the number of instability domains may
lead to the formation of incredibly complicated patterns.
However, if the resonant criterion between spatial frequencies
from the first and following static instability domains is taken
into consideration, the number of possible structures is in fact
not so high. This is because the nonlinear system itself will
exclude those ‘inconvenient’ modes from the interaction.

In order to check our theoretical predictions, numerical
calculations were performed. To integrate equation (4), we
used an alternating direction implicit (ADI) method. The
dynamics of the complex amplitude of the intracavity field
(equation (5)) were modelled using the generalized Ikeda’s
map with the fast Fourier transform (FFT) algorithm. The
data were stored for a time interval, tR , to take into account the
field delay in the feedback loop. Calculations were performed
with small-noise initial conditions and on a transverse square
space with grid points N = 256. For the case of short delay
the obtained results were checked with N = 512. The
sizes of the transverse domains are adjusted according to
different pattern formations for optimal simulation results.
All types of structures mentioned above were shown to exist.
Figure 3(b) shows an example arising from the multi-domain
interaction. The corresponding vector diagram, representing
a spatial spectrum, is shown in figure 3(c). This beautiful
pattern formation consists of ‘flowers’ with six ‘petals’. We
refer to it as a flower-like pattern though we note that this term
was originally introduced for a different type of pattern [12].
For these structures the resonant relations q(1)+q(3)+q(4) = 0
and q(1) + q(4) + q(5) = 0 are fulfilled; at the same time there
is no resonant condition for q(2) and as a result the second
domain does not contribute to the pattern formation.

4.2. Hopf structures

By increasing the delay time, for example tR > 5 for
R = 0.8, ϕ0 = π and D/L = 0.025, as in figure 2, the
odd Hopf domain, o1, has the lowest threshold and patterns
resulting from the interaction of Hopf modes within this
domain emerge. In this case we shall only analyse the Hopf
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Figure 3. (a) The bifurcation diagram for R = 0.8, ϕ0 = 0,
D/L = 0.025 and tR = 0, showing five static instability domains.
(b) A snapshot of a flower-like pattern in the transverse plane for
I0 = 0.3, K = 1 (us ∼= 0.39): only one-ninth of the domain
simulated is shown. (c) The corresponding wavevector diagram.

instabilities. We note that the resonance conditions cannot
be fulfilled for the modes within the domain o1 and hence the
basic patterns are travelling or standing waves. If we denote
amplitudes of the Hopf modes asH±

n exp[i(knr±ωt)], where
|kn| = kH∀n, the amplitude equations for them can be written
in the following form:

dH +
n

dt
+

(
1 +

D

L
θH

)
H +

n = (µ − iω)H +
n

−[ζ (1)|H +
n |2 + 2ζ (1)|H−

n |2 + 2ζ (2)nm (|H +
m|2

+|H−
m |2)]H +

n + 2ζ (2)nmH
+
m(H

−
m )

∗H−
n

dH−
n

dt
+

(
1 +

D

L
θH

)
H−

n = (µ∗ + iω)H−
n (9)

−[(ζ (1))∗|H−
n |2 + 2(ζ (1))∗|H +

n |2
+2(ζ (2)nm )

∗(|H−
m |2 + |H +

m|2)]H−
n + 2(ζ (2)nm )

∗H−
m (H

+
m)

∗H +
n

where n = 1, . . . ,M , M � 2 and θH = k2
HL. The

complex coefficient, ζ (2)nm , depends on the angle between kn

and km. The number of interacting modes M may vary.
If M = 1, equations (9) describe the formation of basic
Hopf structures such as the travelling wave and the standing
wave. More complicated Hopf structures emerge for M = 2
due to a combination of travelling waves. One example of
interesting dynamical patterns is alternating rolls, snapshots

(a)

(b)

(c)

Figure 4. Alternating rolls for three different times (a)–(c).
Parameters are R = 0.4, ϕ0 = 0.4π , D/L = 0.1, tR = 5, I0 = 3.7,
K = 1.

of which are shown in figure 4. Alternating rolls arise due
to nonlinear interaction of two standing waves with different
plane orientation and a phase shift of π .

4.3. Hopf–static structures

The resonant conditions for frequencies of interacting modes
can further be fulfilled for modes that belong to different
types of instability domains, namely Hopf and static. In this
case static and Hopf modes can join together in the pattern
forming process. Figure 2(c) is an example in which Hopf
and static bifurcations have comparable threshold values.
The simplest structure for this case is the triadic Hopf–
static (THS) pattern [3] as shown in figure 5(a), with the
corresponding vector diagram in 5(b). The wavevectors k1

and k2, |k1| = |k2| = kH , belong to the Hopf instability
domain, whereas the wavevector q, |q| = qs , corresponds
to the static mode. The resulting pattern drifts in the
direction perpendicular to q. A more complicated Hopf–
static structure is winking hexagons, which consist of two
hexagonal triads from Hopf and static domains. In this
pattern formation the brightness of the individual components
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Figure 5. (a) A snapshot of the triadic Hopf–static pattern.
(b) The corresponding wavevector diagram for R = 0.2,
ϕ0 = 0.13π , D/L = 0.025, tR = 10, I0 = 4.8, K = 1.

oscillates in time [9]. For winking hexagons the relation
q2
s = 3k2

H is required. However, a small deviation from
this relation can lead to the interruption of symmetry and,
as a result, the amplitude of one triad is slightly stronger
than that of the other. The resulting pattern (figure 6) shows
the evolutionary feature of winking hexagons in different
local regions of the transverse plane and it drifts in the
direction perpendicular to the strongest static wavevector q.
We note that such structures are observed only in a very
narrow area of the control parameters R and ϕ0 because
the above relation is fulfilled in the vicinity of the spatial-
homogeneous phase multistability region in which the system
often leads to a spontaneous jump to localized states [14]
or chaotic structures when the amplitude of the pattern is
large. To avoid this jump, calculations were performed very
close to the threshold and with a small value of diffusion
coefficient, since the increase of diffusion coefficient leads
to the decrease of distance between the threshold value and
the second bistability branch.

In summary, we have observed complex spatial
structures of the optical field, such as flower-like patterns,
alternating rolls and oscillating hexagonal structures, which
arise from static and Hopf bifurcations, and Hopf–static
interactions in a nonlinear ring cavity. Here the mechanism
responsible for periodic and quasiperiodic pattern formation
is in principle the same as many other nonlinear diffractive
systems [3–6, 8, 9], namely resonant interactions for active
modes. The delay feedback often leads to the appearance of
dynamical resonance interactions that satisfy the matching of
temporal frequencies of the interactive modes. In this case,
similar dynamical structures can also be observed in different
nonlinear systems. However, in many of these systems,
for example a single-feedback-mirror device with counter-
propagating waves [3] or a ring cavity with a dispersive
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Figure 6. (a) A snapshot of the oscillating hexagonal structures.
(b) The corresponding wavevector diagram for R = 0.2,
ϕ0 = 0.15π , D/L = 0.025, tR = 10, I0 = 4.8, K = 1.

quasi-Kerr medium [15], the relations between spatial critical
wavelengths from different instability domains are fixed and
not dependent on the control parameters of the system. Our
model, however, is flexible in these relations with the choice
of control parameters R and ϕ0. As a result, types of
quasiperiodic pattern may vary with R and ϕ0; an example
being the transition from dodecagon to flower-like patterns on
the variation ofϕ0. Moreover, with the increase of delay time,
more Hopf modes in our system with higher frequencies will
participate in the pattern formation process. Consequently
the complexity of the spatio-temporal structures can only
be limited by imagination and computation/resolution. The
possibility of new pattern formations such as a ‘winking
dodecagon’ type of pattern is currently under investigation.
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