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Formation and transition of labyrinthine domain patterns in a nonlinear optical system
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We report numerical and theoretical investigations of the formation and transition of domain patterns in a
two-dimensional optical system with cosine-type nonlinearity and a feedback loop. Labyrinthine stripe domain
patterns of the electric field are observed in the system, intiated from the Turing instability. The labyrinths are
found to undergo a transition to domain patterns of coexisting stripes and hexagons and disordered hexagon
domains on variation of the incident field intensity, a control parameter of the system. The parameter regions
for these domain structures are explained through the existence and competition of stripes and hexagons in
terms of their amplitude equations. Moreover, the transition from straight stripes to labyrinths is investigated
by varying the feedback coupling coefficient of the system. The transition is shown to be the consequence of
coexistence of and interaction between stripes and domain walls.
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Labyrinthine patterns are nonequilibrium spatial struc-patterns is investigated on varying the feedback coupling co-
tures that take the form of a mosaic of striped patches irefficient of the system. The coexistence and interaction of
spatially extended systems, each of which has a fixed buatripes and domain walls is found to be attributable to laby-
arbitrary orientation and almost constant wavelength. Labytinth formation in this system.
rinths were first observed experimentally from a sequence of Our model comprises a spatially extended two-
transverse smectic instabilities culminating in the generatiolimensional light-phase modulator of reflection type coupled
of disclination dipoles in ferrimagnetic materfd@—3). Such  With a feedback loop, the schematic being shown in Fig) 1
patterns have been studied in various theoretical models su¢fl- The nonlinearity of the phase modulator, i.e., the func-
as distributed oscillatorfg] and Rayleigh-Beard convection tional dependence of the phase modulation on the incident
[5] as spontaneous pattern formation and in reactionfiEld intenSity, is chosen to be cosine type. Such a nonlinear
diffusion systems as excitable spatial struct@sThe fact ~“medium” can be electronically synthesized in actual ex-
that virtually the same patterns occur in physically diversgP€riments using optoelectronic feedback as demonstrated re-
systems has motivated a mathematical framework that corfently in Ref. [10]. The hybrid optoelectronic approach
siders common Symmetries of these systems, genera| priﬁhowed flexible selection and control in Operation of the non-
ciples for their underlying formation, and descriptions of linear system and different optical pattern formations, such
their macroscopic structure. In recent work a simplified@s Web structures and black eyes, were observed using bimo-
mathematical model, the linear Helmholtz equation, was dedal, unimodal, and piecewise nonlinearities in such a system
rived from reduction of the fourth-order nonlinear diffusion [10].
equation to provide a better understanding of the nature of The dynamics of phase variatiar(r,t) of a propagating
the disordered roll patterrg]. Moreover, wavelet transform  light wave in a thin nonlinear medium is described by the
has been used as a tool linking data provided from experidiffusive equation
ments and computer simulations to the macroscopic order
parameters obtained from thed®, thus offering important o ou(r,t)
means for comparison of experiment with theory. In this ar- ot
ticle, we investigate the formation of labyrinthine domain Y
fype nonlinearity and  foedback 1oop. Disordered Siipe dg@NETE! IS the radius vector inthe ransverse plattee time

. ; . -coordinate, andry the characteristic relaxation time of the
main patterns in both phase and amplitude of the electric
field are observed numerically in the system, arising initially
from the Turing instability. The labyrinths are found to un-
dergo a transition to domain patterns of coexisting stripes
and hexagons and then to disordered hexagon domains on A, >
variation of the control parameters of the incident field in- §
tensity in the system. The parameter regions for these do-
main structures are explained through the existence and com- ¥
petition of stripes and hexagons in terms of their amplitude
equations. Moreover, the coarsening process describing the -
transition between straight stripes and labyrinthine domain

+u(r,t)=DV2u(r,t) + K{1—cog 27l 4(r,1)]},

FIG. 1. Schematic of the nonlinear optical system with feed-
*Email address: phywl@phy.hw.ac.uk back. A, andA,are the complex amplitudes of input and output
TEmail address: physl.phy.hw@phyfsa.phy.hw.ac.uk fields, respectively.
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nonlinearity. D is the diffusion coefficient related to the , 20
diffusion length of the nonlinear mediurfi? the transverse aL L, '
Laplacian, andK the feedback coupling coefficient. 2kym FooR
l4(r,t)=|A(r,z=L,1)|? is the intensity distribution of the 12 Feut-off Wt
light waveA registered on the other side of the phase modu- 08
lator, after propagation in the feedback loop of lengtfThe
last is described by the free-space propagation equation in 04 i
the paraxial approximation, 0.0
AAnzY oo (b)
—2ikg—————=VIA(r.z1) 2 % 004 |-
I 3

with the range in the longitudinal directionsz<L and the 008 17
boundary condition 012

A(r,z=0t)=Agexdiu(r,t)], 3 016

-0.20

whereko=2/\ is the wave number. A;=Ry1—RA;, is 0.0 20
the effective incident field amplitude registered on the front I,
face of the phase modulator, whefg, is the input field
amplitude outside the cavity aridl the intensity reflectivity FIG. 2. (a) Instability islands in the bifurcation diagrams aftx)

of both the input and output mirrors. Note that the round-tripsteady-state homogeneous solutions and their stabilities after the

time of the feedback loop is considered to be much shorteirequency cutoff fromg,, for two cases of different values &

than 74 so that the feedback signal delay is neglected. =—0.057 and 0.1, depicted by solid and dotted lines, respec-
Equations(1)—(3) admit a spatially homogeneous steady- tively. Dashed lines irib) stand for unstable regionsD is fixed at

state solutioruy=K[1—cos(2rlg)] andl4=1,=|Ay|?. Lin- D=0 for both cases.

ear stability analysis of these equations gives the character-

istic equation sient period and is formed by patches of stripes. The stripes
within each patch have a fixed but arbitrary orientation and
A=—(1+Dg?) + 2K sin(2l o) (27l o) sin(g*L/2Kp), almost constant wavelength, as confirmed by inspecting the

(4) power spectra of the signal, showing bright spots in a thin
ring structure. The patches are shown to be mediated by

where q is the wave number of the perturbatiolh=0  various forms of defects, such as grain boundaries, disloca-
marks a Turing bifurcation, from which point the homoge- tions, and disclinations, and mimic those observed in mag-
neous steady state loses its stability, giving rise to static pahetic materials and Rayleigh-Bard convection. On increas-
tern formation. \ is cyclic in both the intensity, and the ing 1,, dark spots emerge in the areas of these defects, from
square of the wave number This gives a two-dimensional which small patches ofr hexagon structure are formed in
array of instability islands in thel §,q%) space. Figure (@)
shows the first four instability domains in this space, for W
different values ofK=—0.05r and —0.1#, and fixedD
=0. In general, the sizes of the islands increase Wjthnd
|K|. For simplicity of analysis, we have in this work intro-
duced a spatial frequency filter with a frequency cutoff of
Jeu= V2Kom/L before the feedback signd) is coupled to
the phase modulator. The interactions between different in-
stability islands in theq direction have therefore not been
taken into account. For this case, instability in the steady-
state solutiorug occurs only in the areas whetel/dl ;>0
and its range increases with increase giuntil the full re-
gion is covered, as shown in Fig(.

Our numerical work focuses on the unstable region in the
first cycle ofug(ly). Three different domain pattern forma-
tions have been observed in this region on variation of the
field intensityl,. The numerical simulations are performed
on a transverse square space with grid polts256 and a
size of some 18 times the characteristic length of the pat-
terns. In the middle area of the unstable region stripe domain FIG. 3. Intensity distributionsy for K= —0.057, D=0, and
patterns emerge in both the phase and intensity of the lightifferent incident field intensitiega) 1,=0.781,(b) 1,=0.812,(c)
wave; the latter is shown in Fig(&. Evolving from small- 1,=0.817, and(d) 1,=0.844, showing transitions of different do-
noise initial conditions, such a pattern is static after a tranmain pattern formations.

o
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some regions where sufficient number of spots are formed, as 0.10 T costobla T
shown in Fig. 8b). The orientations of the hexagons are iy N
determined by the original alignment of the defects. The pat- 008 -
terns are now dynamical. The competition of different struc- 3 I
X iy . . < 006 -

tures results in slow drifting of the domains and their expan- 2
sion and contraction in size in the transverse space. On a

. . . . g 0.04 -
further increasind,, the sizes of the hexagon patches in- s A
crease through the emergence of more dark spots from the 002 -
destabilized stripes, a snapshot of the coexisting stripe and L P .
hexagon domains being shown in FigcB Whenly is in- 000 Lotel vy ot
creased from this value, the hexagon patches seem to win the 0.60 065 070 075 080 085 090 095
competition against stripes; their sizes increase and become I,

dominant. Asl, approaches the second Turing bifurcation

point on the right side, pure hexagon domain patterns appear. FIG. 4. Stationary-amplitude solutions of Eqg5) for
They comprise patches af hexagon structure with arbitrary K=—0.05m andD=0. The solid(dashedllines correspond to so-
orientations but the same wavelength. The patterns beconigions stable(unstablé against noise perturbation. The areas be-
static again. The connections of different domains are orgaty"ee“ vertical dotteéj lines mark the two (;ostable regions of stripes
nized again through defects, such as pentagons and hepffd hexagons. S HY, andH™ stand for stripes, O hexagons, amd

gons on the domain boundaries, as shown in Fig).3Ve  N€Xagons, respectively.

note that the patterns on decreasiggrom the middle show spectively. The upper branchHﬁ (7>0) andHT (<0)
similar features to those on increasihg undergoing tran- gre stable for — DAL +20) << p2(201+ L) (4
sitions from stripe domains to coexisting stripe and hexagom {»)2. The lower branches for both hexagon structures are
structures to hexagon domain patterns. The only differencgjyays unstable. The amplitudes of stripe and hexagon solu-
for increasingl, is that the hexagons are 0 hexagons.tjons as functions off, together with their stability are shown
Throughout this work we ran the simulation typically for a i, Fig. 4. As seen, stripes are stable in the middle area
time of 50 000G, some ten times the transient perio_d of theagainst noise perturbations while 0 anl hexagons are
system, to determine whether patterns were static or dystaple on the left and right wings, respectively. In between
namic. . . _ _ there are two regions where both stripes and hexagons are
The competition and transition of different domain pat-taple. In these regions we have performed a further stability
terns as demonstrated in the simulations may be understogghalysis of one solution against the other. It shows a small
from the stripe-hexagon interactions of our system. To thigyrea of costable stripes and hexagons in each of the regions.
end we derive the amplitude equations for these basic patteffye find that the stability regions of the three different pat-

formations. For the case of small valuesdfhe equations to  terns jdentified above by the amplitude equations correspond
third order[11] are sufficient to describe the evolution of the 15 the three different domain structures that we have ob-

amplitude functions. They are given by served numerically, namely, labyrinths, hexagon domain pat-
dA terns, and coexisting stripe and hexagon domain structures.
Tod_tl = uA+ nAF A —[&AP+ {2(|Aj|2+ IAJDIA; While the parameter regions of the three different domain
structures from our simulations can be identified using the

©) amplitude equations, the existence of labyrinthine patterns,
instead of straight stripes, cannot be explained by these sim-
plified equations. Let us therefore investigate other types of
pattern formation that may exist in this system. Figure 5

shows the bifurcation diagram in {,K) space. There are

wherei,j,k=1,2,3, and obey the convention of circular per-
mutation. The four coefficients are relatively simple in our
system and are given by

pw=2Ksin(2mlo)(2mlg) — 1, two additional parameter regions identified to the left of the
spontaneous pattern-forming ar&d), in which patterns are
n=2K[sin(27l o) (27l o)+ 2 cog 2l o) (271 )?], observed under hard excitations of the linearly stable homo-
geneous steady state. The leftmost curve marks the threshold
L=4K[sin(2ml ) (271 o) +sin(271 o) (271 )], for the emergence of localized stai@s’s) with a circular-
symmetric pulse excitation. The localized states have the
Lo=4K[sin(27l o) (27 g) — 2 cog 2l o) (2771 ) usual Gaussian distribution with an oscillating tail when the
) two parameterK and |, are set in the area close to the
+2 sin2lo) (271 4)°]. threshold. However, away from the threshold curve, other

) . . forms of localized solution, such as a ring and a dot with a
The s_trlpes, given b)‘f\1= Vvl £ exdie], A%:AZ%ZO' anzd ring, are found to exist, as shown in the left inset of Fig. 5. In
any circular permutation, are stable far> 7 51/(5_1_52()) fact, when the incident light intensity is set close to the SP
>0. Hexagon solutions arl; , s=H exfli¢;»al, With Hi,  poundary, these different localized structures are multistable
=[ =N +4u(l1+28)112(L+28,) for @1+ @+ 93 solutions of the system, which one appears depending on the
=0 andHT,=[— n* Vn*+4u({1+245)112({1+24,) for  initial condition of excitation. In general, more complicated
@1+ @+ 3=, corresponding to O andr hexagons re- structures usually correspond to higher strengths of initial
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FIG. 5. Bifurcation diagram inlg,K) space shows three differ-
ent pattern-forming regions. LS, DW, and SP correspond to local-
ized states, domain walls, and spontaneous pattern. Localized states FIG. 6. Transition from ordered stripes to labyrinthine domain
(left insed are obtained foK=—0.5m, 1,=0.512, andD =0, for patterns on increasinig. The other parameters are setlgs 0.75
different strengths of initial excitation. Domain walls with localized and D =0.
states(right inse} are obtained using the same parameters but the
initial excitation as the dashed line. Straight stripes can form in

most of the DW region, using a straight or slightly curved stripe as - .
initial condition. more unstable wave numbers join the pattern selection pro-

cess due to the growth of the instability island, as discussed
o - . earlier. On further increasing, domain walls form and di-

excitation. Moreover_, within the LS domain and close 0 th.evide the pattern into domains of stripes with different orien-
SP boundary, domain walls may form, the area of which IS’tations[Fi 6(b)]. The domains become smaller and their
marked by DW. For instance, a straight stripe is stableh b 9. ' th lue & i JFi d
evolving from initial excitation of a straight or modestly 6udm ers growﬁ_a; e.varL]Je p mcreased igs. 6c) an h
zigzag-modulated stripFig. 5, middle inset This simula-  0(d)]- The coefficient is therefore an order parameter that

ican describe the coarsening process in this system. This pro-

tion result under periodic boundary conditions implies that™ ; X
such a straight stripe of infinite length is a solution of theVides the mechanism for development of the labyrinths from

system. We note that this stripe is static and therefore distin@rdered patterns in our system. The scenario can also explain
from traveling-wave-front solutions in excitable reaction- the existence of hexagon domains of different orientations as

diffusion systemg12]. More generally, we observe coexist- shown in Fig. 3, since the spontaneous pattern for that pa-
ing domain walls with localized states in this region using,rameter set is the hexagon. We note that this mechanism is
for instance, more complicated curving stripes as initial consimilar to that suggested in a degenerate optical parametric
ditions. In this case the localized states are created fromscillator[13], in which labyrinths were considered as inter-
evolving stripes during the transient period. The resultingmediate between patterns with defects and striped domain
patterns are static, an example being shown in the right insetalls. Labyrinths have also been observed in an optical reso-
of Fig. 5. The spots and walls in such a structure are shownator with vectorial Kerr medium in which such patterns
to interact through their oscillating tails. emerge as the system coarsens and domains [l

The existence of both domain walls and localized states is We note that Fig. 5 shows only the left part of the pattern-
shown to extend to the SP region, though they are masked ifyrming region as presented in Fig. 4. The results are some-
this region by the spontaneous patterns, i.e., stripes and hexgnat symmetrical between the left and right parts, if you take
gons, as discussed earlier, and consequently the threshold gk, account the darkinstead of bright spots and walls on
their appearance is difficult to identify clearly. It is the coex- the right. Moreover, if the system operates in the next cycle
istence of and interaction between the hard excitation ang|itn higher incident intensityFig. 2(b)], more complicated
spontaneous patterns that give rise to labyrinths and othggcajized structures, domain stripes, and their coexistence
domain patterns in this region. This can be clearly seen byaye heen observed, which are attributable to stronger phase
investigating pattern evoluthn on increasing _the f‘?edbac'fnodulations in the nonlinear medium due to increased inci-
strengthK (to the more negative directipmnd with a fixed  gent light intensity in this region. Consequently, domains of

incident intensity, sayo=0.75, corresponding to the vertical ¢omplex forms of stripes appear in this parameter region.
dashed line in Fig. 5. WheK just enters the SP region,

straight stripes emerge under weak noise perturbations to the Most useful discussions with Dr. M. A. Vorontsov and
homogeneous steady-state solution, the wavelength of whidRrofessor R. G. Harrison are gratefully acknowledged. This
equals that at the critical point. On increasikg curving  work was supported by EPSRGU.K.) Grant No.
stripes appear first with isolated dislocatididg. 6(@] as GR/M32573 and SHEFCScotland Grant No. RDG/078.

013807-4



FORMATION AND TRANSITION OF LABYRINTHINE . .. PHYSICAL REVIEW A 63013807

[1] M. Seul, L. R. Monar, L. O’'Gorman, and R. Wolfe, Science [9] M. A. Vorontsov, Yu. D. Dumarevsky, D. V. Pruidze, and V.

254, 1616(1991). I. Shmalhauzen, lzv. Akad. Nauk SSSR, Ser. FH2, 374
[2] M. Seul and R. Wolfe, Phys. Rev. Le@i8, 2460(1992. (1988; S. A. Akhmanov, M. A. Vorontsov, and V. Yu.
[3] M. Seul, L. R. Monar, and L. O'Gorman, Philos. Mag.a8, lvanov, Pis'ma Zh. Eksp. Teor. FiZ7, 611 (1988 [JETP

471(1992. Lett. 47, 707 (1988].

[4] P. Coullet, T. Frisch, and G. Sonnino, Phys. Revi9:2087  [10] M. A. Vorontsov, G. W. Carhart, and R. Dou, J. Opt. Soc. Am.

(1994; P. Coullet and K. Emilsson, Physicafl, 119(1992. B 17, 266(2000.

[5] M. C. Cross and D. I. Meiron, PhyS. Rev. Left5, 2152 [11] S. Cilibertoet aI., PhyS Rev. Lett65, 2370(1990
(1995. [12] W. Lu, D. Yu, and R. G. Harrison, Opt. Let24, 578 (1999,

[6] R. E. Goldstein, D. J. Muraki, and D. M. Petrich, Phys. Rev. E
53, 3933(1996, and references therein.

[7] C. Bowmanet al,, Physica D123, 474 (1999.

[8] C. Bowman and A. C. Newell, Rev. Mod. Phy30, 289
(1998.

and references therein.

[13] M. Le Berreet al,, J. Opt. B: Quantum Semiclass. Opt.347
(2000.

[14] R. Gallegoet al, Phys. Rev. E61, 2241(2000.

013807-5



