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Formation and transition of labyrinthine domain patterns in a nonlinear optical system
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We report numerical and theoretical investigations of the formation and transition of domain patterns in a
two-dimensional optical system with cosine-type nonlinearity and a feedback loop. Labyrinthine stripe domain
patterns of the electric field are observed in the system, intiated from the Turing instability. The labyrinths are
found to undergo a transition to domain patterns of coexisting stripes and hexagons and disordered hexagon
domains on variation of the incident field intensity, a control parameter of the system. The parameter regions
for these domain structures are explained through the existence and competition of stripes and hexagons in
terms of their amplitude equations. Moreover, the transition from straight stripes to labyrinths is investigated
by varying the feedback coupling coefficient of the system. The transition is shown to be the consequence of
coexistence of and interaction between stripes and domain walls.
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Labyrinthine patterns are nonequilibrium spatial stru
tures that take the form of a mosaic of striped patches
spatially extended systems, each of which has a fixed
arbitrary orientation and almost constant wavelength. La
rinths were first observed experimentally from a sequenc
transverse smectic instabilities culminating in the genera
of disclination dipoles in ferrimagnetic material@1–3#. Such
patterns have been studied in various theoretical models
as distributed oscillators@4# and Rayleigh-Be´nard convection
@5# as spontaneous pattern formation and in reacti
diffusion systems as excitable spatial structures@6#. The fact
that virtually the same patterns occur in physically dive
systems has motivated a mathematical framework that c
siders common symmetries of these systems, general
ciples for their underlying formation, and descriptions
their macroscopic structure. In recent work a simplifi
mathematical model, the linear Helmholtz equation, was
rived from reduction of the fourth-order nonlinear diffusio
equation to provide a better understanding of the nature
the disordered roll patterns@7#. Moreover, wavelet transform
has been used as a tool linking data provided from exp
ments and computer simulations to the macroscopic o
parameters obtained from theory@8#, thus offering important
means for comparison of experiment with theory. In this
ticle, we investigate the formation of labyrinthine doma
patterns in a two-dimensional optical system with cosi
type nonlinearity and a feedback loop. Disordered stripe
main patterns in both phase and amplitude of the elec
field are observed numerically in the system, arising initia
from the Turing instability. The labyrinths are found to u
dergo a transition to domain patterns of coexisting stri
and hexagons and then to disordered hexagon domain
variation of the control parameters of the incident field
tensity in the system. The parameter regions for these
main structures are explained through the existence and c
petition of stripes and hexagons in terms of their amplitu
equations. Moreover, the coarsening process describing
transition between straight stripes and labyrinthine dom
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patterns is investigated on varying the feedback coupling
efficient of the system. The coexistence and interaction
stripes and domain walls is found to be attributable to la
rinth formation in this system.

Our model comprises a spatially extended tw
dimensional light-phase modulator of reflection type coup
with a feedback loop, the schematic being shown in Fig. 1~a!
@9#. The nonlinearity of the phase modulator, i.e., the fun
tional dependence of the phase modulation on the incid
field intensity, is chosen to be cosine type. Such a nonlin
‘‘medium’’ can be electronically synthesized in actual e
periments using optoelectronic feedback as demonstrate
cently in Ref. @10#. The hybrid optoelectronic approac
showed flexible selection and control in operation of the n
linear system and different optical pattern formations, su
as web structures and black eyes, were observed using b
dal, unimodal, and piecewise nonlinearities in such a sys
@10#.

The dynamics of phase variationu(r ,t) of a propagating
light wave in a thin nonlinear medium is described by t
diffusive equation

t0

]u~r ,t !

]t
1u~r ,t !5D¹'

2 u~r ,t !1K$12cos@2pI d~r ,t !#%,

~1!

wherer is the radius vector in the transverse plane,t the time
coordinate, andt0 the characteristic relaxation time of th

FIG. 1. Schematic of the nonlinear optical system with fee
back. Ain andAout are the complex amplitudes of input and outp
fields, respectively.
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nonlinearity. D is the diffusion coefficient related to th
diffusion length of the nonlinear medium,¹'

2 the transverse
Laplacian, and K the feedback coupling coefficient.
I d(r ,t)5uA(r ,z5L,t)u2 is the intensity distribution of the
light waveA registered on the other side of the phase mo
lator, after propagation in the feedback loop of lengthL. The
last is described by the free-space propagation equatio
the paraxial approximation,

22ik0

]A~r ,z,t !

]z
5¹'

2 A~r ,z,t ! ~2!

with the range in the longitudinal direction 0<z<L and the
boundary condition

A~r ,z50,t !5A0 exp@ iu~r ,t !#, ~3!

wherek052p/l is the wave number. A05RA12RAin is
the effective incident field amplitude registered on the fro
face of the phase modulator, whereAin is the input field
amplitude outside the cavity andR the intensity reflectivity
of both the input and output mirrors. Note that the round-t
time of the feedback loop is considered to be much sho
thant0 so that the feedback signal delay is neglected.

Equations~1!–~3! admit a spatially homogeneous stead
state solutionu05K@12cos(2pId)# and I d5I 0[uA0u2. Lin-
ear stability analysis of these equations gives the chara
istic equation

l52~11Dq2!12K sin~2pI 0!~2pI 0! sin~q2L/2k0!,
~4!

where q is the wave number of the perturbation.l50
marks a Turing bifurcation, from which point the homog
neous steady state loses its stability, giving rise to static
tern formation. l is cyclic in both the intensityI 0 and the
square of the wave numberq. This gives a two-dimensiona
array of instability islands in the (I 0 ,q2) space. Figure 2~a!
shows the first four instability domains in this space,
different values ofK520.05p and 20.1p, and fixedD
50. In general, the sizes of the islands increase withI 0 and
uKu. For simplicity of analysis, we have in this work intro
duced a spatial frequency filter with a frequency cutoff
qcut5A2k0p/L before the feedback signalI d is coupled to
the phase modulator. The interactions between different
stability islands in theq direction have therefore not bee
taken into account. For this case, instability in the stea
state solutionu0 occurs only in the areas where]u/]I 0.0
and its range increases with increase ofI 0 until the full re-
gion is covered, as shown in Fig. 2~b!.

Our numerical work focuses on the unstable region in
first cycle ofu0(I 0). Three different domain pattern forma
tions have been observed in this region on variation of
field intensity I 0 . The numerical simulations are performe
on a transverse square space with grid pointsN5256 and a
size of some 18 times the characteristic length of the p
terns. In the middle area of the unstable region stripe dom
patterns emerge in both the phase and intensity of the l
wave; the latter is shown in Fig. 3~a!. Evolving from small-
noise initial conditions, such a pattern is static after a tr
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sient period and is formed by patches of stripes. The stri
within each patch have a fixed but arbitrary orientation a
almost constant wavelength, as confirmed by inspecting
power spectra of the signal, showing bright spots in a t
ring structure. The patches are shown to be mediated
various forms of defects, such as grain boundaries, dislo
tions, and disclinations, and mimic those observed in m
netic materials and Rayleigh-Be´nard convection. On increas
ing I 0 , dark spots emerge in the areas of these defects, f
which small patches ofp hexagon structure are formed i

FIG. 2. ~a! Instability islands in the bifurcation diagrams and~b!
steady-state homogeneous solutions and their stabilities after
frequency cutoff fromqcut for two cases of different values ofK
520.05p and 20.1p, depicted by solid and dotted lines, respe
tively. Dashed lines in~b! stand for unstable regions.D is fixed at
D50 for both cases.

FIG. 3. Intensity distributionsI d for K520.05p, D50, and
different incident field intensities:~a! I 050.781,~b! I 050.812,~c!
I 050.817, and~d! I 050.844, showing transitions of different do
main pattern formations.
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FORMATION AND TRANSITION OF LABYRINTHINE . . . PHYSICAL REVIEW A 63 013807
some regions where sufficient number of spots are formed
shown in Fig. 3~b!. The orientations of the hexagons a
determined by the original alignment of the defects. The p
terns are now dynamical. The competition of different stru
tures results in slow drifting of the domains and their exp
sion and contraction in size in the transverse space.
further increasingI 0 , the sizes of the hexagon patches
crease through the emergence of more dark spots from
destabilized stripes, a snapshot of the coexisting stripe
hexagon domains being shown in Fig. 3~c!. When I 0 is in-
creased from this value, the hexagon patches seem to wi
competition against stripes; their sizes increase and bec
dominant. AsI 0 approaches the second Turing bifurcati
point on the right side, pure hexagon domain patterns app
They comprise patches ofp hexagon structure with arbitrar
orientations but the same wavelength. The patterns bec
static again. The connections of different domains are or
nized again through defects, such as pentagons and h
gons on the domain boundaries, as shown in Fig. 3~d!. We
note that the patterns on decreasingI 0 from the middle show
similar features to those on increasingI 0 , undergoing tran-
sitions from stripe domains to coexisting stripe and hexa
structures to hexagon domain patterns. The only differe
for increasing I 0 is that the hexagons are 0 hexagon
Throughout this work we ran the simulation typically for
time of 50 000t0 , some ten times the transient period of t
system, to determine whether patterns were static or
namic.

The competition and transition of different domain pa
terns as demonstrated in the simulations may be unders
from the stripe-hexagon interactions of our system. To t
end we derive the amplitude equations for these basic pa
formations. For the case of small values ofK the equations to
third order@11# are sufficient to describe the evolution of th
amplitude functions. They are given by

t0

dAi

dt
5mAi1hAj* Ak* 2@z1uAi u21z2~ uAj u21uAku2!#Ai ,

~5!

wherei , j ,k51,2,3, and obey the convention of circular pe
mutation. The four coefficients are relatively simple in o
system and are given by

m52K sin~2pI 0!~2pI 0!21,

h52K@sin~2pI 0!~2pI 0!12 cos~2pI 0!~2pI 0!2#,

z154K@sin~2pI 0!~2pI 0!1sin~2pI 0!~2pI 0!3#,

z254K@sin~2pI 0!~2pI 0!22 cos~2pI 0!~2pI 0!2

12 sin~2pI 0!~2pI 0!3#.

The stripes, given byA15Am/z1 exp@iw1#, A25A350, and
any circular permutation, are stable form.h2z1 /(z12z2)2

.0. Hexagon solutions areA1,2,35H exp@iw1,2,3#, with H1,2
0

5@h6Ah214m(z112z2)#/2(z112z2) for w11w21w3

50 and H1,2
p 5@2h6Ah214m(z112z2)#/2(z112z2) for

w11w21w35p, corresponding to 0 andp hexagons re-
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spectively. The upper branchesH1
0 (h.0) andH1

p (h,0)
are stable for 2h2/4(z112z2),m,h2(2z11z2)/(z1
2z2)2. The lower branches for both hexagon structures
always unstable. The amplitudes of stripe and hexagon s
tions as functions ofI 0 together with their stability are show
in Fig. 4. As seen, stripes are stable in the middle a
against noise perturbations while 0 andp hexagons are
stable on the left and right wings, respectively. In betwe
there are two regions where both stripes and hexagons
stable. In these regions we have performed a further stab
analysis of one solution against the other. It shows a sm
area of costable stripes and hexagons in each of the reg
We find that the stability regions of the three different p
terns identified above by the amplitude equations corresp
to the three different domain structures that we have
served numerically, namely, labyrinths, hexagon domain p
terns, and coexisting stripe and hexagon domain structu

While the parameter regions of the three different dom
structures from our simulations can be identified using
amplitude equations, the existence of labyrinthine patte
instead of straight stripes, cannot be explained by these
plified equations. Let us therefore investigate other types
pattern formation that may exist in this system. Figure
shows the bifurcation diagram in (I 0 ,K) space. There are
two additional parameter regions identified to the left of t
spontaneous pattern-forming area~SP!, in which patterns are
observed under hard excitations of the linearly stable hom
geneous steady state. The leftmost curve marks the thres
for the emergence of localized states~LS’s! with a circular-
symmetric pulse excitation. The localized states have
usual Gaussian distribution with an oscillating tail when t
two parametersK and I 0 are set in the area close to th
threshold. However, away from the threshold curve, ot
forms of localized solution, such as a ring and a dot with
ring, are found to exist, as shown in the left inset of Fig. 5.
fact, when the incident light intensity is set close to the
boundary, these different localized structures are multista
solutions of the system, which one appears depending on
initial condition of excitation. In general, more complicate
structures usually correspond to higher strengths of ini

FIG. 4. Stationary-amplitude solutions of Eqs.~5! for
K520.05p andD50. The solid~dashed! lines correspond to so
lutions stable~unstable! against noise perturbation. The areas b
tween vertical dotted lines mark the two costable regions of stri
and hexagons. S, H0, andHp stand for stripes, 0 hexagons, andp
hexagons, respectively.
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WEIPING LU AND SVETLANA L. LACHINOVA PHYSICAL REVIEW A 63 013807
excitation. Moreover, within the LS domain and close to t
SP boundary, domain walls may form, the area of which
marked by DW. For instance, a straight stripe is stab
evolving from initial excitation of a straight or modest
zigzag-modulated stripe~Fig. 5, middle inset!. This simula-
tion result under periodic boundary conditions implies th
such a straight stripe of infinite length is a solution of t
system. We note that this stripe is static and therefore dist
from traveling-wave-front solutions in excitable reactio
diffusion systems@12#. More generally, we observe coexis
ing domain walls with localized states in this region usin
for instance, more complicated curving stripes as initial c
ditions. In this case the localized states are created f
evolving stripes during the transient period. The result
patterns are static, an example being shown in the right i
of Fig. 5. The spots and walls in such a structure are sho
to interact through their oscillating tails.

The existence of both domain walls and localized state
shown to extend to the SP region, though they are maske
this region by the spontaneous patterns, i.e., stripes and h
gons, as discussed earlier, and consequently the thresho
their appearance is difficult to identify clearly. It is the coe
istence of and interaction between the hard excitation
spontaneous patterns that give rise to labyrinths and o
domain patterns in this region. This can be clearly seen
investigating pattern evolution on increasing the feedb
strengthK ~to the more negative direction! and with a fixed
incident intensity, sayI 050.75, corresponding to the vertica
dashed line in Fig. 5. WhenK just enters the SP region
straight stripes emerge under weak noise perturbations to
homogeneous steady-state solution, the wavelength of w
equals that at the critical point. On increasingK, curving
stripes appear first with isolated dislocations@Fig. 6~a!# as

FIG. 5. Bifurcation diagram in (I 0 ,K) space shows three differ
ent pattern-forming regions. LS, DW, and SP correspond to lo
ized states, domain walls, and spontaneous pattern. Localized s
~left inset! are obtained forK520.5p, I 050.512, andD50, for
different strengths of initial excitation. Domain walls with localize
states~right inset! are obtained using the same parameters but
initial excitation as the dashed line. Straight stripes can form
most of the DW region, using a straight or slightly curved stripe
initial condition.
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more unstable wave numbers join the pattern selection
cess due to the growth of the instability island, as discus
earlier. On further increasingK, domain walls form and di-
vide the pattern into domains of stripes with different orie
tations @Fig. 6~b!#. The domains become smaller and the
numbers grow as the value ofK increases@Figs. 6~c! and
6~d!#. The coefficientK is therefore an order parameter th
can describe the coarsening process in this system. This
vides the mechanism for development of the labyrinths fr
ordered patterns in our system. The scenario can also exp
the existence of hexagon domains of different orientations
shown in Fig. 3, since the spontaneous pattern for that
rameter set is the hexagon. We note that this mechanis
similar to that suggested in a degenerate optical param
oscillator@13#, in which labyrinths were considered as inte
mediate between patterns with defects and striped dom
walls. Labyrinths have also been observed in an optical re
nator with vectorial Kerr medium in which such patter
emerge as the system coarsens and domains grow@14#.

We note that Fig. 5 shows only the left part of the patte
forming region as presented in Fig. 4. The results are so
what symmetrical between the left and right parts, if you ta
into account the dark~instead of bright! spots and walls on
the right. Moreover, if the system operates in the next cy
with higher incident intensity@Fig. 2~b!#, more complicated
localized structures, domain stripes, and their coexiste
have been observed, which are attributable to stronger p
modulations in the nonlinear medium due to increased in
dent light intensity in this region. Consequently, domains
complex forms of stripes appear in this parameter region

Most useful discussions with Dr. M. A. Vorontsov an
Professor R. G. Harrison are gratefully acknowledged. T
work was supported by EPSRC~U.K.! Grant No.
GR/M32573 and SHEFC~Scotland! Grant No. RDG/078.
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FIG. 6. Transition from ordered stripes to labyrinthine doma
patterns on increasingK. The other parameters are set asI 050.75
andD50.
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