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ABSTRACT

We develop stochastic adaptive algorithms for on-line correction
of spatial nonuniformity in random-access addressable imaging
systems. The adaptive architecture is implemented in analog VLSI,
integrated with the sensors on the focal plane. Random sequences
of address locations selected with predetermined statistics are used
to adaptively equalize the intensity distribution at a variable spa-
tial scale. Through a logarithm transformation of system variables,
adaptive gain correction is achieved through offset correction in
the log-domain. This idea is particularly attractive for compact
implementation using translinear floating-gate MOS circuits. The
technique applies to a variety of solid-state imagers, such as ar-
tifical retinas and IR sensor arrays. Experimental results confirm
gain correction in a 64 x 64 pixel adaptive array integrated on a
2.2mm x 2.25mm chip in 1.2 um CMOS technology.

1. INTRODUCTION

Since the seminal work by Carver Mead on neuromorphic floating-
gate adaptation in the silicon retina [1], few groups have addressed
the problem of on-line adaptive correction of nonuniformities on
the focal plane in solid-state image sensor arrays [2] and neuro-
morphic vision sensors [3], while most efforts have concentrated
on non-adaptive correction using on-chip [4] or off-chip calibrated
storage. Gain and offset nonuniformities in the photosensors and
active elements on the focal plane contribute “salt-and-pepper”
fixed-pattern noise at the received image, which limit the resolu-
tion and sensitivity of imaging systems. Flicker noise and other
physical sources of fluctuation and mismatch make it a necessity
to correct for these effects on-line, which is problematic since the
image received is itself unknown. Existing “blind” adaptive al-
gorithms for on-line correction are complex and the amount of
computation required to implement them is generally excessive.
Integration on the focal plane would incur a significant increase
in active pixel size and so a decrease in spatial resolution and fill-
factor of the imager along with an increase in power consumption.

In this paper we present a class of stochastic adaptive algo-
rithms which integrate general nonuniformity correction with min-
imal, if not zero, overhead in the number of active components
on the focal plane. In particular, we use floating-gate adaptive
CMOS technology combined with translinear circuitry to imple-
ment a two-transistor adaptive gain element for on-line focal-plane
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compensation of (photo-)current gain mismatch. The algorithms
make effective use of the statistics of image intensity under ran-
domly selected sequences of address locations, and avoid the need
for extra circuitry to explicitly compute spatial averages and lo-
cally difference the result. The resulting stochastic algorithms are
particularly simple to implement.

2. ADAPTIVE NONUNIFORMITY CORRECTION

Nonuniformity correction can be approached using two strategies:
apply a uniform reference image to the static imager and ensure
that all pixel outputs are equal [1], or drift natural scenes across
the imager where each pixel subtracts its output from its spatially
low-pass filtered output to derive an error signal [5]. The former
is referred to as static nonuniformity correction (SNUC) and the
latter as scene-based nonuniformity correction (SBNUC). Our im-
ager can accomodate either type of mismatch correction strategy.
The SBNUC algorithm has been implemented on the focal plane
in CMOS and IR based imagers [2] and has been successful in
reducing offset mismatch.

In this paper, we will concentrate on SNUC to reduce current
gain mismatch in a photo-transistor based CMOS imager or sili-
con retina. We will show how by applying a controllable voltage
offset on a floating-gate transistor in each pixel, we achieve an ad-
justable, adaptive pixel current gain. Our system architecture also
allows to perform SBNUC through controlling the statistics of ran-
dom address sequences.

First we setup the problem in terms of established on-line al-
gorithms for offset correction. Then we show how this same algo-
rithm can be extended to gain mismatch reduction through a simple
logarithm transformation of system state variables.

correction

system

Figure 1: Offset correction
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2.1. Canceling offset nonuniformity
Figure 1 schematically demonstrates the offset correction tech-
nique. The set of system equations are:

y=z+o, z=y+qg=zto+tyq 1)
where z is the input random (sensor) variable, y is the received
input with unknown offset o, ¢ is the applied offset correction and
z is the corrected output. For offset compensation, we want (o +
¢) = const for all pixels. A simple (gradient descent) adaptive rule
to achieve this is [5]:

Ag = —a(z = zpey) )]

which adjusts the output z on average towards a reference con-
structed by expressing variable degrees of smoothness in the im-

age:
oy = { (2)

(z)lnca.l

where the < - > symbol represents spatial averaging at global and
local scales, respectively, and o denotes the adaptation (or “learn-
ing”) rate. Circuits implementing a locally differenced diffusive
kernel, with adjustable space constant, to perform the computa-
tions (2) are presented in [2]. We introduce a stochastic version of
the rule in equation (2):

for SNUC 3)
for SBNUC

Agery = —a (2eqry — zr(k—l)) 4

where the subscripts r(k) and r(k — 1) denote pixel addresses at
consecutive time steps k and (k — 1) respectively. Taking expec-
tations on both sides of equation (4), for a particular pixel selected
at time k, yields

E [Aqr(k)] =-a (Zr(k) -E [Zr(lc—l)])

which can be further expanded in terms of the statistics

E[z-1)] = /zr(k—x)P (r(k — 1)|r(k)) d°r(k — 1)

as determined by the conditional transition probabilities (densi-
ties) p (r(k — 1)|r(k)). Therefore, by controlling the statistics
p (r(k — 1)]r(k)) through proper choice of the random sequence
of addresses r, we can implement, on average, the spatial convolu-
tion kernels needed to implement both SNUC and SBNUC in (3).
In particular, for a random sequence, r(k — 1) and r(k) are inde-
pendent, and

Ez@-n] = (2) (5)

whereas, if r(k — 1) and r(k) are related by embedding memory
in the address sequence (e.g., through inertia, or imposing limits
on Ar),

E [ze(k-1)] = (D1ocar- ©)

Equation (4) is a(stochastic) on-line version of SNUC and like-
wise, equation (6) implements stochastic SBNUC. Hardware re-
quirements can be further simplified by thresholding the update (4)
into the pilot-rule

Agyky = —asign (Zr(k) - Zr(k—l)) )

with fixed-size update increments and decrements.

2.2. Canceling gain nonuniformity

The gradient descent formulation [5] also adaptively compensates
for gain mismatch, although it does not prevent the gain from be-
coming negative. Our approach is to relate gain correction, un-
der the positivity constraint imposed by current-domain circuits, to
offset correction through a logarithm transformation. This trans-
formation has a physical meaning which can be exploited in the
hardware implementation as discussed in the next section. Figure 2
schematically illustrates the concept of gain mismatch correction
in relation to Figure 1.

correction

system
Figure 2: Gain correction

The system is governed by equations:

Y =ax', Z=Ay =Aazx (3)

which transform into
Inz’=lnA+Ina+Inz, ®

so that for gain nonuniformity correction, (In A + Ina) = const
for all pixels. By identifying correspondending terms (in particu-
lar,In A = gor A = e? and In @ = o) in equations (1) and (9), and
because of the monotonicity of the logarithmic map, the learning
rule (7) can be rewritten as:

Ageqry = ~asign (2h) — 2k(a-1)) (10)

which in turn can be expressed as a stochastic on-line learning rule
with relative gain increments:

Ay = —aArpysign (zny = Zege-n)) - (D)

3. FOCAL-PLANE VLSI IMPLEMENTATION

Rather than implementing (11) directly, we make use of the expo-
nential relationship between voltage and current in a (subthresh-
old) MOS transistor to encode a current gain as the exponential of
a differential voltage across a floating gate capacitor. The incre-
ments and decrements Agq in (10) are then naturally implemented
by hot-electron injection and tunneling across the floating gate ox-
ide [6].

3.1. The pixel

The pixel circuit diagram is shown in Figure 3. A vertical pnp
bipolar transistor converts photon energy to emitter current L,
with current gain 3. Transistors M; and M, form a current mir-
ror with adjustable current gain. M is a floating-gate transistor
with two control electrodes; Vin and Vi, are the voltages which,
through capacitive coupling, set voltage V;,. Vi is an externally
applied global voltage for all pixels. The pixel’s output current
Ious is sourced by transistor My and measured off-chip. Tran-
sistor M3’s gate and source provide random access pixel address-
ing at the periphery, as needed to implement the stochastic kernel.
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Figure 3: Floating gate adaptive pixel circuit

This design establishes current transfer function in the subthresh-
old regime:

- —KA —KA
I A

where ¢ = (IoW/Lexp (Vaa/Vr))>, Io is the subthreshold leak-
age current, W and L are width and length of transistors M;
and Mz, A = Cgr/(Cer + Cin) =~ 0.3, Q is the charge in-
jected/tunneled onto the floating gate, Vr is the thermal voltage
and  the subthreshold slope factor (back gate coefficient).

The first exponential term on the right in equation (12) corre-
sponds to the adaptive gain correction A, while the second repre-
sents a normalization term which is globally controlled by Vi r.
By injecting electrons onto (tunneling electrons from) the floating
gate [6] we incrementally (decrementally) alter @, which in turn
relates logarithmically to A, and thereby effectively implements
'the pilot rule (10). ’

3.2. System architecture

Figure 4 illustrates the setup used to experimentally validate the
concept of reducing the gain mismatch between pixels on the fab-
ricated prototype adaptive array with 64 x 64 pixels. We uni-
formly illuminate the imager and randomly select a column and
row address r(k). With switch S, closed and S> open, we mea-
sure Ioyi(r(x)) using a transimpedance amplifier. If Lusrry) <
I ut(x(k~1)), We open S1 and momentarily close Sz. The drain
of transistor M> is pulsed down to Vin; = (Vya — 8V') and a
small packet of negative charge is injected onto the floating gate.
If Loye(r(e)) 2 Tout(r(k—1))» We do not alter the gain of the se-
lected pixel and continue by randomly selecting a new pixel. As
such we implement a one-sided version of the stochastic pilot rule
of equation (10):

_J o Luee) = Luerr-1) <0
Ader) = { 0 otherwise. .

Because adaptation is active in only one direction, the average
level (I,4¢) drifts in that direction over time. We can use the cou-
pling electrode to compensate for this drift.

4. EXPERIMENTAL RESULTS

The 64 x 64 phototransistor-based imager was uniformly illumi-
nated using a white light source. We scanned the pixel array before

—
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Figure 4: Harware system setup

any gain mismatch correction and again after every 200 cycles of
correction until we judged correction to be completed after 2800
cycles. Each of the 4096 pixels were selected every cycle. Figure 5
shows the evolution of histograms of I, versus adaptation cycle
number.Also shown are the scanned images before and after gain
mismatch correction. .

We measured and plotted the standard deviation of L (01,.,,,)
divided by the mean Iout ({(Lout)) versus (low:) before and after
gain mismatch correction. The five different (I,.) represent five
different levels of illumination 1,2, 3,4 and 5. Adaptation was
done at illumination level 5. Figure 6 plots these results.

after cormrection before correction

—

Iout (nA)

Figure 5: Time course of gain nonuniformity reduction

We projected a black and white 35mm slide onto the imager
after gain mismatch correction and scanned the array. The slide
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contained a light-grey character “R” against a dark-grey background
(both bitmapped). We show the resulting scanned image in Figure
7. N
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Figure 6: Pre-and-post corrected o7, / (Zout) versus Ioy for five
different illumination intensities.

5. DISCUSSION

Injecting a negative packet of charge onto the floating gate of tran-
sistor M lowers its gate voltage and therefore increases its output
current. Consequently, correction is in one direction only, namely
increasing the current gain. Since the efficiency of charge injection
depends exponentially on the magnitude of drain-source current
through the device [6], pixels having higher L. will inject more
each time their drains are pulled to V;,;. This “positive feedback”
effect can be kept in check either by driving the common drain with
a current rather than voltage source, or by appropriately setting
Vinj, keeping Sz closed for a short time only (= 100usec.) and
having hysteresis in the comparator which compares Lys(r(k—1))
with Ioye(r(x)). We choose the latter option for simplicity of the
test setup, and expect to obtain new results with the former scheme
in the near future.

The scanned image before correction in Figure 5 shows strong
vertical striations in I,,¢. After the gain mismatch correcton pro-
cedure, these striations are no longer visible as evidenced by the
post-correction image. We see 5 dark pixels (low Loy¢) in this im-
age. These pixels are “stuck” off and therefore experience neglige-
able injection when they are selected. Ideally, after correction we
should expect to see an impulse in the histogram, all pixels having
the same I, when uniformly illuminated. In reality we see a sin-
gle narrow peak in the histogram due to injection efficiency being
proportional to current and due to hysteresis in the comparator.

Figure 6 demonstrates that we did in fact reduce gain mis-
match and not just a7,,, / (lo«t) as a consequence of increasing
(Lout) [7]. The pre-and-post-correction data lie on two separate
curves demonstrating that there is indeed a dramatic reduction in
gain mismatch due to adaptation. Atlow {Ipu:) (i.e. low illumina-
tion), there is a reduction in o7, / (Tout) from 70% to 10%. At
higher (Ioy:) (i.e. high illumination), the reduction is from 24% -
to 4%.

The scanned image of an “R” after adaptation shown in Fig-
ure 7 gives a clear image mostly free of the salt-and-pepper noise
usually present in silicon retinas or active pixel sensors.

Figure 7: Image after gain mismatch reduction

6. CONCLUSIONS

We have introduced a compact pixel design and a strategy for re-
ducing gain mismatch inherrent in arrays of phototransistors used
in CMOS imagers. We have shown how the learning rule for off-
set correction can be transformed into the log domain to produce
a stable learning rule for on-line gain mismatch correction. This
rule is very naturally implemented by a simple translinear circuit.
The pixel incorporates a floating gate transistor which can be in-
crementally injected with a small packet of negative charge. The
injected charge increases the current gain of the pixel in relative
terms (i.e., by constant increments on a logarithmic scale).

Experimental results from a custom 64 x 64 phototransistor-
based adaptive pixel CMOS array, fabricated through MOSIS, prove
that our pixel design and learning rule were successful for SNUC.
We expect to refine and extend the experimental characterization
of the prototype chip in the next couple of months, and demon-
strate SBNUC for on-line gain mismatch reduction.
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