
356 J. Opt. Soc. Am. A/Vol. 19, No. 2 /February 2002 Mikhail A. Vorontsov
Decoupled stochastic parallel gradient descent
optimization for adaptive optics: integrated

approach for wave-front sensor information fusion

Mikhail A. Vorontsov

U.S. Army Research Laboratory, Computational and Information Sciences and Technology Directorate, Intelligent
Optics Laboratory, Adelphi, Maryland 20783

Received March 30, 2001; revised manuscript received June 14, 2001; accepted July 13, 2001

A new adaptive wave-front control technique and system architectures that offer fast adaptation convergence
even for high-resolution adaptive optics is described. This technique is referred to as decoupled stochastic
parallel gradient descent (D-SPGD). D-SPGD is based on stochastic parallel gradient descent optimization of
performance metrics that depend on wave-front sensor data. The fast convergence rate is achieved through
partial decoupling of the adaptive system’s control channels by incorporating spatially distributed information
from a wave-front sensor into the model-free optimization technique. D-SPGD wave-front phase control can
be applied to a general class of adaptive optical systems. The efficiency of this approach is analyzed numeri-
cally by considering compensation of atmospheric-turbulence-induced phase distortions with use of both low-
resolution (127 control channels) and high-resolution (256 3 256 control channels) adaptive systems. Results
demonstrate that phase distortion compensation can be achieved during only 10–20 iterations. The efficiency
of adaptive wave-front correction with D-SPGD is practically independent of system resolution. © 2002 Op-
tical Society of America
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1. INTRODUCTION
Instantaneous correction of phase distortions emerging
from wave propagation through optically inhomogeneous
media is a key adaptive optics objective.1–3 This correc-
tion is performed by means of active optical elements
(wave-front correctors): electrically addressed deform-
able mirrors and mirror arrays, multielement liquid crys-
tal phase spatial light modulators, and micromechanical
mirrors. These active optical elements are capable of
changing the wave-front phase spatial distribution u(r, t)
at each point r 5 $x, y% on the corrector aperture by ap-
plying control signals (controls) $ul(t)%, l 5 1 ,..., N to its
electrodes. The number of controls (control channels) N
determines the adaptive system spatial resolution and
hence spatial-frequency bandwidth for phase distortion
correction. Increasing spatial resolution without sacri-
ficing adaptive system operational speed is an important
avenue for adaptive optics development. In most cases
high-resolution phase aberration correction is considered
not as a replacement for but rather as an important addi-
tion to existing adaptive optics techniques and is used in
combination as a high-resolution secondary feedback loop
system.4,5

Far-reaching increases in spatial resolution (from hun-
dreds to thousands of control channels) cannot be
achieved by simply replacing old-fashioned deformable
mirrors with large-scale micromechanical mirror arrays6,7

or with high-resolution LC phase spatial light
modulators.8 Transition to high-resolution adaptive op-
tics is a nontrivial problem that may require radical
changes of the entire adaptive system architecture.
These changes first of all should affect wave-front aberra-
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tion sensing devices (wave-front sensors). The most com-
monly used adaptive optics wave-front sensors, such as
the lateral shearing interferometer and Shack–
Hartmann and curvature sensors, are based on computa-
tion of control signals from wave-front slopes or wave-
front-phase second derivatives (slope-type sensors).1

Those involving matrix algebra computations—known as
wavefront phase/control reconstruction—are efficient only
for relatively low-resolution systems (N < 200–300).
Estimations show that the number of operations (multi-
plications and additions) required to calculate the con-
trols from ‘‘slope-type’’ wave-front sensor measurements
increase as N2 (Ref. 9). This makes a hundredfold in-
crease in N a challenging task even with parallel archi-
tecture computers specially designed to perform matrix
operations.

A quite different type of problem emerges for adaptive
optics with wave-front control based on gradient descent
optimization, often referred to as model-free optimization
adaptive optics.10–13 In these systems all information
about the distorted wave front is reduced (collapsed) into
a single signal (performance metric J) typically measured
by a single photodetector. By applying small perturba-
tions of the controls $dul% (l 5 1 ,..., N) one can compute
approximations to the metric gradient and use this ap-
proximation in a gradient descent type iterative proce-
dure for wave-front corrector control voltage update. The
way this gradient approximation is performed is depen-
dent on the technique used: multidithering,13 sequential
perturbations,10,11 and stochastic parallel gradient
descent.12,14 Typically computation of the gradient ap-
proximation is quite simple when compared with corre-
2002 Optical Society of America
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sponding computations of controls from wave-front local
slopes. The major problem with model-free optimization
adaptive optics is slow convergence. The convergence
rate, defined as the number of iterations Nc required to
approach the vicinity of the performance metric extre-
mum, typically increases as N increases. In one of the
most efficient gradient descent optimization techniques—
stochastic parallel gradient descent (SPGD) (also called
the simultaneous perturbation stochastic approx-
imation15,16)—the convergence rate Nc increases at least
as N1/2 (Ref. 17). A typical number of iterations Nc for an
adaptive system with N ' 100 control channels is on the
order of Nc ' 102 (Ref. 18). A hundredfold increase in
resolution would cause the adaptive system to be unac-
ceptably slow for most applications related to the compen-
sation of dynamically changing phase distortions.

The question raised in this paper is how to merge the
advantages of wave-front sensor based adaptive optics
with model-free optimization adaptive optics and elimi-
nate their inherent problems that limit the transition to
high-resolution wave-front control. The limitations im-
posed by the conventional adaptive wave-front control
techniques mentioned above can be overcome by using a
new wave-front control technique (decoupled SPGD, or
D-SPGD) described here. This technique incorporates
features of both wave-front sensor based adaptive optics
and model-free gradient descent optimization wave-front
control.

In Section 2 we consider briefly two major wave-front
control principles used in conventional adaptive systems:
wave-front phase conjugation and model-free optimiza-
tion. The D-SPGD technique is introduced in Section 3.
Adaptive system architectures based on the D-SPGD
wave-front control are described in Section 4. Numerical
analysis of both low-resolution (127 control channels) and
high-resolution (256 3 256 control channels) D-SPGD
adaptive systems in the presence of atmospheric-
turbulence-induced phase distortions is presented in Sec-
tions 4 and 5. Results include high-resolution adaptive
wave-front control for both uniform and randomly modu-
lated input wave intensities. The D-SPGD control algo-
rithm demonstrates exceptionally fast convergence rates
for both low- and high-resolution adaptive systems even
in the presence of strong intensity scintillations. The
reason for such fast convergence is the partial decoupling
of control channels through incorporation of spatially dis-
tributed information from the wave-front sensor into the
conventional SPGD wave-front control technique.

2. WAVE-FRONT INFORMATION
PROCESSING IN ADAPTIVE OPTICS
SYSTEMS
A. Wave-Front Phase Conjugation Adaptive Systems
Consider the two primary adaptive optics system archi-
tectures in Fig. 1 from a general information processing
and control viewpoint. In both systems wave-front phase
update is performed by applying control signals $ul(t)% to
wave-front corrector electrodes. The phase u(r, t)
5 ( l51

N ul(t)Sl(r) introduced by the corrector is depen-
dent on both the control parameters $ul(t)% and the influ-
ence functions $Sl(r)%. In the phase conjugation type
adaptive system shown in Fig. 1a, phase correction is
typically performed by sensing an uncompensated phase
d (r, t) 5 u(r, t) 1 w(r, t) (residual phase error) by using
a wave-front sensor. The wave-front sensor transforms
the phase error d (r, t) into an intensity distribution
Id(r, t) 5 F@d (r, t)# that can be directly measured. The
transformation Id 5 F@d# is dependent on the wave-front
sensor type, but it is always nonlinear. As a result, ad-
ditional reconstruction of the wave-front phase from mea-
surements is required. This phase reconstruction can be
replaced by the computationally more efficient calculation
of phase error signals $d l(t)% @d (r, t) 5 ( l51

N d l(t)Sl(r)#.
The closed-loop feedback controller is designed to null
these error signals.1,19,20 For high-resolution control
systems this strategy leads to phase conjugation:
d (r, t) 5 0 or u(r, t) 5 2w(r, t).

B. Model-Free Optimization Adaptive Systems
A different signal-processing concept is used in model-free
optimization adaptive optics systems (Fig. 1b). The only
Fig. 1. Schematics for (a) wave-front phase conjugation and (b) model-free optimization adaptive system types.
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information available for control is a performance metric
J(t). Depending on the adaptive system type, the metric
J can be directly measured by a photodetector (e.g., Strehl
ratio in Fig. 1b) or calculated by using the system’s output
intensity distribution Id(r, t), for example, the sharpness
function21:

J1
s 5 E Id

2~r, t !d2r. (1)

Although traditionally in the sharpness function (1)
Id(r, t) is defined as an intensity distribution in the image
plane, we consider here a generalized definition assuming
that Id(r, t) in Eq. (1) represents the output intensity of a
wave-front sensor. The wave-front sensor is envisioned
here in general terms as an optical system transforming
wave-front phase modulation d (r, t) into an intensity dis-
tribution Id(r, t). This can be intensity in a lens image
plane, intensity distribution of an interferometric or
phase contrast sensor, intensity in a lenslet array focal
plane, etc.

Perhaps the most efficient implementation of the
model-free optimization technique for adaptive optics is
the SPGD algorithm.12,14 This algorithm allows on-chip
implementation as a parallel very-large-scale-integration
(VLSI) microprocessor.12,22 In the SPGD technique, per-
formance metric optimization is achieved by applying
small random perturbations (vector du
5 $dul%, l 5 1 ,..., N) to wave-front corrector electrodes
and measuring the corresponding perturbation of the
metric dJ. The products $dJdul% are used as an approxi-
mation $Ĵl8% of the true gradient components $Jl8%
5 $]J/]ul% : $Ĵl8% 5 $dJdul%.The feedback controller up-
dates the control parameters in accordance with the fol-
lowing standard gradient descent procedures:

dul~t !

dt
5 2gĴl8~t !, (2a)

for continuous time and

ul
~n11 ! 5 ul

~n ! 2 gĴl8
~n ! ~l 5 1 ,..., N ! (2b)

for iterative techniques. The update coefficient g in Eqs.
(2) is positive for system performance metric minimiza-
tion and negative otherwise.

This SPGD approach was recently applied for high-
resolution wave-front control.14 For a high-resolution
piston-type wave-front corrector and a geometrically
matched wave-front sensor the high-resolution SPGD
controller can be described by the following spatially dis-
tributed model:

u ~n11 !~r! 5 u ~n !~r! 2 gdJ ~n !du ~n !~r!, n 5 0, 1 ,...,
(2c)

where both the wave-front perturbation du (n)(r) and the
gradient estimation Ĵ8(n) (r) 5 dJ (n)du (n)(r) (gradient
map) are spatially distributed functions.14

As mentioned in Section 1, the main drawback of adap-
tive optics techniques based on system performance met-
ric optimization is the relatively slow convergence. The
low convergence rate for SPGD results from strong cross
coupling of the control parameters occurring in Eqs. (2)
through the metric perturbation dJ. As described below,
decoupling of the control equations (2) can signifi-
cantly increase the adaptation process convergence rate.
Complete decoupling of the control channels means that
the wave-front control system can be considered as a set
of N independent subsystems operating in parallel. The
convergence rate of the entire control system is dependent
on the convergence rate of the slowest subsystem but not
on the control channel number N as in the case of the con-
ventional gradient descent technique. In principle, the
same goal—control channel decoupling and consequent
convergence rate increase—can also be achieved by or-
thogonalization of the control equations (2). Indeed, rep-
resenting the gradient components

$Ĵl8~t !% > (
k51

N
]Ĵl8

]uk
jk~t ! [ (

k51

N

Ak,ljk~t !

in the form of a Taylor series expansion within a small vi-
cinity of a stationary state solution $ul

(0)% of Eq. (2a) we
obtain

dj l~t !

dt
5 2g(

k51

N

Ak,ljk~t !, (2d)

where $j l% 5 $ul 2 ul
(0) %. Orthogonalization (diagonal-

ization) of the matrix $Ak,l% in Eq. (2d) results in decou-
pling of the control equations. The main problem with
this technique is that it requires knowledge of the matrix
coefficients $Ak,l%. This information is typically not
available. In Section 3 we show that in some practically
important cases, control system decoupling (partial de-
coupling) can be realized on the basis of a different idea—
the use of a spatially distributed (vector) system perfor-
mance metric dependent on wave-front sensor data.

3. DECOUPLED STOCHASTIC PARALLEL
GRADIENT DESCENT OPTIMIZATION
The metric perturbation dJ in the SPGD control tech-
nique describes the integrated system response to the
control parameter perturbation du 5 $dul%. In accor-
dance with the SPGD control rule (2) this integrated re-
sponse (scalar value dJ) is passed to all individual chan-
nels in the form of the products $dJdul% (gradient
estimation). In many cases it is possible to obtain more
accurate ‘‘distributed’’ or vector information about system
response to the wave-front phase perturbation. The
problem is how to obtain and utilize this distributed (vec-
tor) information in a gradient descent type optimization
procedure. As shown below, use of a distributed perfor-
mance metric (performance metric map) obtained from
the wave-front sensor data can lead to control equation
decoupling and result in a substantial improvement of the
SPGD adaptive optics convergence rate.

A. Performance Metric Map and Metric Vector
Consider an adaptive optical system performance metric
J that can be represented in the following cumulative
form:

J~t ! 5 (
l51

M

cljl~t !, jl~t ! 5 E j~r, t !Zl~r!d2r. (3)
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Expression (3) introduces definitions of the performance
metric map j(r, t) and performance metric vector
j(t) 5 $ j1(t) ,..., jM(t)%. Both are dependent on the
sensor’s intensity distribution Id(r, t). In expression (3),
c 5 $cl% is a weighting coefficient vector (cl > 0 and
ucu 5 1), and $Zl(r)% is a set of functions describing signal
processing applied to the sensor data (sensor signal-
processing functions). In most examples considered here
we assume that the functions $Zl(r)% coincide with the
wave-front corrector influence functions $Sl(r)%. The
term ‘‘matched wave-front corrector and sensor’’ corre-
sponds to $Zl(r)% 5 $Sl(r)%.

Consider an adaptive system with piston-type wave-
front corrector. The stepwise influence functions $Sl(r)%
5 $S0(r 2 rl)% are defined inside nonoverlapping ele-
ment areas V l (subapertures) centered at grid points rl
@S0(r 2 rl) 5 1 for rl P V l and S0(r 2 rl) 5 0 other-
wise]. For the matched corrector and sensor instead of
expression (3) we obtain

J~t ! 5 (
l51

N

cl jl~t !, jl~t ! 5 E
Vl

j~r, t !d2r. (4)

The sharpness function (1) gives an example of the
cumulative-type performance metric with the metric map:
j l

s (r, t) 5 Id
2(r, t).

B. Distributed (Decoupled) Stochastic Parallel Gradient
Descent Controller
For optimization of the cumulative performance metric
(3), consider the iterative SPGD procedure (2b). Repre-
sent the lth gradient component approximation
Ĵ18 5 dJdul in the SPGD algorithm in the form

Ĵl8 5 clduldjl~t ! 1 (
kÞl

N

ckduldjk~t !.

Correspondingly, instead of Eq. (2b) we obtain

ul
~n11 ! 5 ul

~n ! 2 gclduldjl
~n ! 2 g(

kÞl

N

ckduldjk
~n ! ,

~l 5 1 ,..., N !. (5)

As mentioned above, the slow convergence of the SPGD
optimization technique is related to control channel cross
coupling described by the last term in Eq. (5). If the
cross-coupling term is small, the SPGD controller (5) can
be described by the following system of equations:

ul
~n11 ! 5 ul

~n ! 2 gcldjl
~n !dul , ~l 5 1 ,..., N !. (6)

Define the iterative procedure (6) for control parameter
update as the SPGD controller with decoupled metric per-
turbation. The controller (6) might also be called a dis-
tributed SPGD controller, as it is based on performance
metric vector information. The abbreviation D-SPGD
controller covers both definitions. For neglect of the
cross-coupling terms in Eq. (5), the following decoupling
conditions should be fulfilled:

U(
kÞl

N

ckduldjkU ! uclduldjlu for all l 5 1 ,..., N.

(7)
Condition (7) suggests that the sum of cross-coupling
terms for each control channel is small and the gradient
estimation is dependent only on ‘‘local’’ information for
each channel. Note that if condition (7) is fulfilled, both
conventional SPGD [Eq. (2)] and D-SPGD [Eq. (6)] con-
trollers perform optimization of the same system perfor-
mance metric J but using different control parameter up-
date rules.

C. Spatially Distributed (SD) Wave-Front Control: SD-
SPGD Controller
A similar idea for control channel decoupling can be ap-
plied to high-resolution adaptive systems. For a geo-
metrically matched high-resolution piston-type wave-
front corrector and wave-front sensor, the high-resolution
feedback controller can be described by the following spa-
tially distributed iterative gradient descent procedure
(SD-SPGD controller):

u ~n11 !~r! 5 u ~n !~r! 2 gdj ~n !~r!du ~n !~r!, n 5 0, 1 ,... .
(8)

In the SD-SPGD adaptive system architectures, the
wave-front phase update is based on the metric map per-
turbation dj(r) resulting from the random wave-front
perturbation du(r).

D. Decoupling Condition
Consider decoupling conditions (7)—the backbone of the
D-SPGD wave-front-control technique. Assume that the
wave-front sensor provides point-to-point mapping of
wave-front phase into intensity as described by a function
Id(r) 5 Id@u(r)#. Assume also that the metric map j(r)
is a function of intensity Id : j 5 j(Id). Taking into ac-
count the cumulative form of the system performance
metric (3), the perturbations $djl% in Eqs. (5)–(7) can be
represented in the following form:

djl 5 E ]I j~r!]uId~r!Zl~r!du~r!d2r 5 (
k51

N

ak,lduk , (9)

where

ak,l 5 E ]I j~r!]uId~r!Sk~r!Zl~r!d2r. (10)

Here ]I j(r) and ]uId(r) are the first variations of j(r)
5 j @Id# and Id(r) 5 Id@u#, and du(r) 5 Sk51

N dukSk(r).
The matrix $ak,l% in Eq. (10) (coupling matrix) describes
cross coupling between control parameter perturbations
and the corresponding perturbations of the metric vector
components. When we take into account the representa-
tion (9), (10) for $djl%, the SPGD control rule (5) reads

ul
~n11 ! 5 ul

~n ! 2 gcl(
k51

N

ak, jdulduk

2 g(
k51

N

(
nÞl

N

cnak,ndulduk , ~l 5 1 ,..., N !.

(11)

In the conventional SPGD technique the perturbations
$dul% are statistically independent random variables hav-
ing zero mean and equal variances: ^dulduk& 5 s 2d l,k ,
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where d l,k is the Kronecker symbol (d l,k 5 1 for k 5 l and
0 otherwise). Recall that the sum of the last two terms in
Eq. (11) is proportional to the gradient component ap-
proximation: Ĵl8 5 dJdul . Hence for the expectation
^dJdul& we obtain

^dJdul& 5 ^~dul!
2&S clal, l 2 (

kÞl

N

ckal,kD ,

~l 5 1 ,..., N !. (12)

Thus, in the statistical sense, the decoupling condition (7)
means that

U(
kÞl

N

al,kU ! ual, lu, ~l 5 1 ,..., N !. (13)

Consider an adaptive system with matched piston-type
wave-front corrector and sensor: $Zl(r)% 5 $Sl(r)%
5 $S0(r 2 rl)%, where $S0(r 2 rl)% are stepwise func-
tions. In this case the coupling matrix (10) is diagonal
(al,k 5 al,ld l,k) and the decoupling conditions in the form
(13) are always satisfied (SkÞl

N al,k 5 0). This means
that instead of the conventional SPGD update rule (2b)
for the cumulative performance metric (3) optimization,
the D-SPGD controller in the form (6) can be used. Note
that this result is valid for the assumption that the wave-
front sensor provides point-to-point mapping Id(r)
5 Id@u(r)# and for a matched corrector and sensor hav-
ing nonoverlapping stepwise functions. In most wave-
front sensor types, phase intensity mapping is described
by an operator Id 5 G@u# that may not preserve point-to-
point correspondence between Id and u. In this case the
intensity Id at a fixed point r1 may be dependent on the
phase modulation belonging to a local area of r1 (local
mapping) or even on phase modulation belonging to the
entire wave-front sensor aperture (global mapping). The
decoupling condition for these cases requires a separate
analysis.
4. DECOUPLED STOCHASTIC PARALLEL
GRADIENT DESCENT ADAPTIVE
SYSTEM ARCHITECTURES
The schematic of the adaptive system based on SPGD op-
timization with distributed (decoupled) metric is shown in
Fig. 2a. The D-SPGD adaptive optics system consists of
the following major components: (a) wave-front sensor
for transforming residual wave-front phase modulation
d (r, t) into an intensity distribution Id(r, t), (b) metric
vector sensor performing measurements and calculations
of the components $ jl% and perturbations $djl%, (c) genera-
tor for the random perturbations $dul% applied to the
wave-front corrector electrodes and used for calculation of
the update signals djldul , and (d) the D-SPGD controller
for computing the control parameters $ul% in accordance
with the iterative procedure (6) and for supplying the per-
turbations $dul% and controls $ul% to the wave-front
corrector electrodes.

A. Requirements for Wave-Front Sensing Devices
In different types of adaptive systems, wave-front sensor
information is utilized in different ways. In phase-
conjugation adaptive systems, wave-front sensor data [in-
tensity Id(r, t)] are used for phase (controls) reconstruc-
tion. Correspondingly, the choice of wave-front sensor is
dictated by the convenience and simplicity of solving the
phase reconstruction problem.

For the adaptive wave-front phase distortion compen-
sation technique (D-SPGD controller) introduced here,
the criteria for wave-front sensor choice are different. In
D-SPGD-type adaptive systems the wave-front sensor
should provide a relatively simple measurement (calcula-
tion) of the metric map j(r, t) and/or metric vector j(t)
corresponding to a cumulative system performance metric
J. The second important constraint is the decoupling
condition that should be fulfilled for the selected perfor-
mance metric J, sensor type, and wave-front corrector
type.
Fig. 2. D-SPGD adaptive system architectures: (a) general schematic, (b) adaptive system with J3 controller (16a). The geometry of
the matched wave-front corrector and 127 subaperture sensor is shown at bottom right.
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B. Performance Metrics and Control Algorithms
Consider performance metrics and wave-front sensor
types that can be used in D-SPGD adaptive wave-front
control systems. For all examples given in this section
we assume that wave-front phase aberration correction is
performed by using a piston-type wave-front corrector de-
scribed by stepwise influence functions $S0(r 2 rl)% and
defined over nonoverlapping areas $V l%, e.g., having rect-
angular or hexagonal geometry. We also assume that the
wave-front sensor and corrector are matched. Consider
the following cumulative performance metrics dependent
on the wave-front sensor output intensity distribution
Id(r, t):

J1 5 (
l51

N

jl
~1 ! [ (

l51

N E
Vl

Id
2~r!d2r; (14a)

J2 5 (
l51

N

jl
~2 ! [ (

l51

N

~ Ī l!
2, Ī l 5 E

Vl

Id~r!d2r, (14b)

J3 5 (
l51

N

jl
~3 ! [ (

l51

N

Īl . (14c)

Here Ī l is the sensor intensity averaged over the subap-
erture area V l . The metric vector components $ jl% in
performance metrics (14) are obtained by integrating the
metric maps over the subaperture areas $V l% correspond-
ing to wave-front corrector elements. Performance met-
ric (14a) coincides with the sharpness function (1). Com-
putation of the metric vector $ jl

(1)% requires squaring the
intensity data before integration over the subaperture ar-
eas $V l%. From a computational viewpoint the perfor-
mance metric (14b) is more efficient. In it the wave-
front-sensor output intensity distribution is first
integrated over the subaperture areas, and the integra-
tion results are then squared. Note that Eqs. (6) describ-
ing the D-SPGD controller depend only on the perturba-
tions $djl% but not on the metric vector components $ jl%
themselves. For the metric J2 [Eq. (14b)], the perturba-
tion djl

(2) can be represented in the following equivalent
form: djl

(2) 5 2 Ī ld Ī l . Correspondingly, for this metric
the D-SPGD controller (6) is given by

ul
~n11 ! 5 ul

~n ! 2 g Ī l
~n !d Ī l

~n !dul , ~l 5 1 ,..., N !,
(15a)

where the factor of 2 is included in the coefficient g. Note
that for high-resolution systems, metrics (14a) and (14b)
coincide. The spatially distributed model of the D-SPGD
controller optimizing sharpness functions (14a) or (14b)
reads

u ~n11 !~r! 5 u ~n !~r! 2 gId
~n !~r!dId

~n !~r!du ~n !~r!,

~n 5 0,1 ,..., !. (15b)

The performance metric J3 [Eq. (14c)] is proportional to
the sensor’s output wave power. The D-SPGD controller
for the metric J3 has the simplest form:

ul
~n11 ! 5 ul

~n ! 2 gd Ī l
~n !dul , ~l 5 1 ,..., N !. (16a)

Correspondingly, the spatially distributed model can be
represented by the following equation:
u ~n11 !~r! 5 u ~n !~r! 2 gdId
~n !~r!du ~n !~r!,

~n 5 0,1 ,..., !. (16b)

A schematic for the adaptive system with D-SPGD con-
troller (16a) [referred to as the J3 controller] is shown in
Fig. 2b. It includes a geometrically matched wave-front
corrector with a photoreceiver system composed of a lens-
let array and a photoarray placed in its focal plane. The
photoarray output signals are proportional to the intensi-
ties $ Ī l% averaged over the subapertures. The D-SPGD
J3-controller operation at the nth step of the iteration
process (16a) include (a) measurement of metric vector
components $ jl

(n)% 5 $ Ī l
(n)%, (b) generation of the random

(pseudorandom) perturbations $dul% applied to the wave-
front-corrector electrodes, (c) measurement of the metric
vector components $ jl

(n1)% 5 $ Ī l
(n1)% corresponding to the

perturbed control parameters $ul
(n) 1 dul%, (d) calculation

of the corresponding metric vector perturbations $djl
(n)%

5 $d Ī l
(n)% 5 $ Ī l

(n1) 2 Ī l
(n)%, and (e) computation of the

products d Ī l
(n)dul and control parameter update.

The D-SPGD technique can also be implemented as a
continuous-time controller. In this case control-
parameter perturbations $dul% 5 $a l(t)sin vt% in the form
of harmonic signals with small random amplitudes $a l(t)%
and the same dithering frequency v are applied simulta-
neously to all control channels. The perturbed metric
vector components $djl% 5 $b l(t)sin vt 1 xl(t)sin 2vt
1 ...% are demodulated by synchronous detectors to ob-
tain modulation amplitudes $b l% used in the continuous-
time controller:

t
dul~t !

dt
5 2ga l~t !bl~t !. (16c)

This approach is similar to the multidithering technique
well known in adaptive optics.10,13 The important differ-
ence is that here only a single dithering frequency is used.

C. Interferometer with a Reference Wave
The conventional interferometer presents an example of a
wave-front sensor that provides two-dimensional point-to-
point mapping of wave-front phase to the sensor’s inten-
sity distributions Id(r, t) 5 F@d (r, t)#. For the interfer-
ometer with a reference wave we have

Id~r, t ! 5 I0~r! 1 I in~r! 1 2m~r!cos@d ~r, t ! 1 D#,
(17)

where I0(r) and I in(r) are reference and input wave in-
tensities, m(r) is the visibility of the interference pattern,
and D is a constant phase shift. Assume for simplicity
uniform intensities I0(r) 5 I0 and I in(r) 5 I in . It can be
easily shown that each of the introduced performance
metrics (14) has a global minimum corresponding to
wave-front phase distortion compensation: d (r, t) 1 D
5 constant or u(r, t) 5 2w(r, t) 1 constant. Assume
that the photoreceiver system of the interferometric
wave-front sensor is composed of a lenslet array with sub-
apertures matched to piston-type wave-front corrector el-
ements providing direct measurement of the subaperture
averaged intensities $ Ī l%, as shown in Fig. 2b. For this
corrector and sensor, the decoupling condition (13) is ful-
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filled. Thus minimization of the performance metrics
(14) can be performed by using the D-SPGD controller
(16).

An interferometer with a reference wave is an ideal
sensor for D-SPGD adaptive optics because it provides
point-to-point phase and intensity mapping. Unfortu-
nately, this sensor is not practical for most adaptive optics
applications because it requires the presence of an undis-
torted reference wave.

D. Phase-Contrast Sensors
Consider wave-front sensors based on the phase contrast
technique: the Zernike filter (ZF) and point diffraction
interferometer (PDI) shown in Fig. 3.23–25 These sensors
do not require a reference wave but are vulnerable to
large-amplitude wave-front tilts. Both wave-front sen-
sors consist of two lenses with a phase changing (ZF) or
an absorbing (PDI) element (spatial filter) placed in the
lenses’ common focal plane. The spatial filter has a small
circular region (a dot) in the middle of the focal plane.
The dot introduces either a phase shift u near p/2 rad
(Zernike sensor) or attenuation by a factor g , 1 (PDI
sensor) applied only to input wave low-order spatial spec-
tral components. For a simplified model corresponding
to a focal plane filter affecting only the zero-order spatial
spectral component, the wave-front sensor’s output inten-
sity is given by

Id~r! 5 I in~r! 1 2~2pF !2IF~0 ! 2 4pFI in
1/2~r!IF

1/2~0 !

3 $cos@d ~r! 2 D# 2 sin@d ~r! 2 D#% (18a)

for the Zernike wave-front sensor and

Id~r! 5 I in~r! 1 ~2pF !2IF~0 !

2 4pFI in
1/2~r!IF

1/2~0 !cos@d ~r! 2 D# (18b)

for the PDI with g 5 0.25 Here F is the lens focal length
normalized by the diffraction parameter kR2 (where k
5 2p/l is the wave number and R is the lens aperture
radius). In Eqs. (18) IF(0) and D are the intensity and
phase of the zero-order spatial spectral component
q 5 0 (q is a wave vector) defined as25

IF~q 5 0 ! 5 U E I in
1/2~r!exp@id ~r!#d2rU2

,

D 5 argF E I in
1/2~r!exp@id ~r!#d2rG . (19)

The normalized value of IF(0) is known as the Strehl ra-
tio, St 5 IF(0)/IF

0 , where IF
0 is the intensity of the zero-

order component in the absence of phase aberrations.
The output intensity distributions (18) are similar to the
interference pattern in the conventional interferometer
with reference wave (17). The important difference is
that both phase-contrast sensors do not preserve point-to-

Fig. 3. Phase contrast wave-front sensor schematic.
point phase intensity mapping as does a conventional in-
terferometer. The output intensities (18) contain quanti-
ties IF(0) and D [see Eq. (19)] dependent on the phase
modulation d (r) over the entire input sensor aperture, re-
sulting in global phase intensity coupling. In fact, in the
phase contrast sensors both point-to-point [through sin
and cos terms in Eqs. (18)] and global [through IF(0) and
D] phase intensity mapping types are present. Results of
the numerical analysis described in Sections 5 and 6 show
that despite the presence of this global coupling both the
ZF the PDI can be used as wave-front sensors in D-SPGD
adaptive systems.

In the following two sections we consider numerical
analysis of two D-SPGD adaptive systems having signifi-
cantly different spatial resolutions for wave-front distor-
tion correction: a low-resolution adaptive system with
127 control channels and a high-resolution spatially dis-
tributed system with 256 3 256 control channels.

5. LOW RESOLUTION DECOUPLED
STOCHASTIC PARALLEL GRADIENT
DESCENT ADAPTIVE SYSTEM:
PERFORMANCE ANALYSIS
A. System Model
Consider a low-resolution D-SPGD adaptive system (Fig.
2b) with a wave-front corrector composed of 127 hexago-
nally shaped elements with piston-type influence func-
tions. Geometry of the corrector elements (mirrors or LC
cells) is shown in the bottom-right corner of Fig. 2b. For
the 256 3 256 pixel numerical grid the wave-front-
corrector fill factor was near 88.3%. The adaptive system
receiver is composed of a lens array containing similar
hexagonally shaped subapertures geometrically matched
with the subapertures of the wave-front corrector. The
lenslet array focuses the sensor’s output wave onto a pho-
todetector array placed in its focal plane. Thus the re-
ceiver system provides measurement of the signals
Ī l (l 5 1 ,..., 127), proportional to the intensities aver-
aged over the lens subapertures. The three wave-front
sensors described above were considered: interferometer
with reference wave, ZF, and PDI.

B. Phase Aberrations
D-SPGD adaptive system performance was analyzed by
using two types of phase distortion: phase distortions
that can be completely removed by the adaptive system
corrector (‘‘corrector friendly’’ phase aberrations) and
phase distortions modeling atmospheric-turbulence-
induced phase fluctuation (‘‘atmospheric-like’’ phase aber-
rations). For corrector friendly phase distortions we
know that ideal compensation can potentially be achieved
and that the compensation level, as well as the adapta-
tion convergence rate, characterizes only the control algo-
rithm efficiency. Atmospheric-like phase aberrations
were introduced in order to examine D-SPGD adaptive
system efficiency in the presence of phase distortion com-
ponents that low-resolution adaptive systems cannot com-
pletely compensate. This adaptation situation character-
izes robustness of the control algorithm in the presence of
wave-front phase noise.
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Digital realizations of a statistically homogeneous and
isotropic random function w(r) with zero mean and An-
drews power spectrum model were used for generation of
both corrector friendly and atmospheric-like phase distor-
tions. The Andrews power spectrum model reads26

GA~q ! 5 2p0.033~1.68/r0!5/3~q2 1 qA
2 !211/6 exp~2q2/qa

2!

3 @1 1 1.802~q/qa! 2 0.254~q/qa!7/6#. (20)

Here r0 is the Fried parameter,27 qA 5 2p/lout , and
qa 5 2p/l in , where lout and l in are the outer and inner
scales of turbulence.

An example of an atmospheric-like phase aberration re-
alization (phase screen) superimposed with wave-front
corrector and -sensor subaperture elements is shown in
Fig. 4a. Random realizations of the corrector friendly ab-
errations wh(r) were obtained from w(r) by approximat-
ing the functions w(r) by stepwise influence functions
$S0(r 2 rl)% defined over hexagonal shaped subapertures
$V l% (l 5 1 ,..., 127). An example of a corrector-friendly
aberration is shown in Fig. 4b. Strength of the input
phase aberration was characterized by the standard de-
viation of the phase fluctuations averaged over the wave-
front corrector aperture sw 5 @*w2(r)d2r#1/2 and by the
Strehl ratio St. The amplitude of the introduced phase
distortions was varied by changing the value of the Fried
parameter r0 in Eq. (20). For each fixed value r0 , 50
phase screens were generated. Simulations were per-
formed for an input wave with a uniform intensity distri-
bution and phase aberrations w(r) or wh(r) located in the
wave-front corrector pupil plane.

Fig. 4. Input-wave phase distortion/perturbation realizations:
(a) atmosphericlike phase aberration pattern superimposed with
hexagonal grid of wave-front corrector/sensor subapertures, (b)
corrector friendly aberrations wh(r) corresponding to w(r), (c)
phase perturbation du(r) (Gaussian spectrum), (d) corrector-
friendly wave-front perturbation duh(r) corresponding to du(r).
C. Wave-Front Perturbations
To generate corrector friendly wave-front phase perturba-
tions duh(r) 5 ( l51

127 dulSl(r), the realizations of a statis-
tically homogeneous and isotropic random function du(r)
with zero mean and Gaussian power spectrum
G(q) 5 G0 exp(22q2/qw

2) were used. Here the character-
istic spatial bandwidth qw 5 2p/lp , where lp is the
spatial-correlation radius. In all calculations the corre-
lation radius was fixed: lp 5 1.0d, where d is the wave-
front-corrector subaperture radius. Control parameter
random perturbations $dul% were obtained by decomposi-
tion of du(r) over the influence functions $S0(r 2 rl)%.
Examples of a phase perturbation du(r) corresponding to
a Gaussian spectrum and the corresponding corrector-
friendly wave-front perturbation duh(r) are shown in
Figs. 4c and 4d, respectively.

D. Feedback Control
Adaptive wave-front control was performed by using the
D-SPGD control algorithms (15a) and (16a) corresponding
to J2 and J3 metric [Eq. (14)] optimization (J2 and J3
controllers). D-SPGD adaptive system efficiency was
compared with an adaptive system based on Strehl ratio
optimization by using the conventional SPGD algorithm
(2b) (SPGD controller). To improve the adaptation pro-
cess convergence rate, the update coefficient g in all of the
control algorithms used here was a function of the
Strehl ratio St. The following empirical rule was used to
adjust the coefficient g during the adaptation process:
g 5 g0(1 1 St21), where g0 is a constant. At the begin-
ning of the adaptation process when the Strehl ratio St is
relatively small the parameter g is large, providing for
significant control-parameter change during a single it-
eration. Decreasing g (following the Strehl ratio in-
crease) prevents the system from oscillatory instability in
the vicinity of the metric extremum. Using an adaptive g
led to approximately a 20% improvement in the conver-
gence rate for all examined control algorithms.

E. Decoupled Stochastic Parallel Gradient Descent
Adaptive System with Interferometric Sensor
Consider first the numerical analysis results for the
D-SPGD systems with an interferometric wave-front sen-
sor. Both turbulence-like and corrector friendly phase
aberration realizations w(r) and wh(r) (phase screens)
were generated for a fixed value of the Fried parameter
r0 . In all numerical experiments described here the
same 50 phase screen realizations were used. A fixed
number of 100 iterations corresponding to the D-SPGD
wave-front control algorithms (15a) and (16a) were per-
formed for each realization of the phase distorted input
field. Adaptive system performance was evaluated by
using J2 and J3 metric values as well as the Strehl ratio
St calculated at each iteration n 5 1 ,..., 100. The adap-
tation process was repeated for each phase distortion re-
alization, and the obtained dependences J2(n), J3(n),
and St(n) (adaptation evolution curves) were averaged.
For the corrector friendly aberrations wh(r) the averaged
metric values ^J2&, ^J3& and the corresponding Strehl ra-
tios ^St& are presented in Fig. 5a as functions of the itera-
tion number n (^ & denotes ensemble averaging over the
phase distortion realizations). For the set of phase
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screens used, the ensemble-averaged standard deviation
for input-field phase fluctuations s in 5 ^ sw& was
s in51.67 rad and the corresponding Strehl ratio ^St&
5 0.13.

The adaptive system with D-SPGD controller (curves 1
and 2) demonstrated significantly faster convergence for
both (15a) and (16a) controllers than did the conventional
SPGD control algorithm (curve 3). Although adaptive
wave-front control in the D-SPGD-type systems discussed
here is based on minimization of the performance metrics
J2 and J3 , for the sake of convenience in comparing re-
sults, adaptation efficiency is characterized principally by
the Strehl ratio. In Fig. 5a both normalized averaged
performance metrics ^J2&, ^J3& (curves 4 and 5) and the
corresponding averaged Strehl ratio evolution curves (1
and 2) are presented together. As seen from the adapta-
tion curves the D-SPGD feedback control algorithms pro-
vided for Strehl ratio increase up to a level of 80% during
the first N80% ; 10–15 iterations and to the 95% level
during N95% ; 50 iterations. With the conventional
SPGD control algorithm the corresponding convergence
rate was on the order of N80% ; 250–300 iterations. The
fastest convergence was achieved with the D-SPGD con-
troller (15a) (curve 1) minimizing metric J2 . Neverthe-
less, the computationally more efficient control algorithm
(16a) corresponding to minimization of the metric J3
(wave-front-sensor output power) resulted in only about a
10–15% increase in the convergence rate at the 80%
Strehl ratio level and had practically the same conver-
gence rate for the 95% Strehl ratio level (compare curves
1 and 2).

Fig. 5. Simulation results for the low-resolution D-SPGD adap-
tive system with interferometric wave-front sensor: (a) for cor-
rector friendly aberrations wh(r), (b) for atmospheric-like phase
distortions w(r). Averaged Strehl ratio adaptation curves 1 and
2 and averaged metric curves 4 and 5 corresponding to the
D-SPGD algorithms (15a) (J2 curves) and (16a) (J3 curves): 1
and 4 for controller (15a) and 2 and 5 for (16a). The averaged
adaptation curves 3 correspond to the conventional SPGD con-
troller (2a). At the bottom-right corner are shown residual
phase patterns: (a) d h(r), (b) d (r). The patterns’ gray-scale
dynamical range is 4p rad.
Atmosphericlike phase-distortion compensation results
for the D-SPGD adaptive system with interferometric
wave-front sensor are shown in Fig. 5b. The Strehl ratio
achieved here is approximately half that achieved during
the corrector friendly aberration compensation in Fig. 5a.
This decrease in the Strehl ratio is caused by the presence
of phase distortion components that low-resolution adap-
tive systems cannot compensate. Nevertheless, the con-
vergence rate remains approximately the same as for cor-
rector friendly aberrations (compare adaptation curves in
Figs. 5a and 5b). An example of the residual phase pat-
terns d (r) and d h(r) achieved after 100 iterations of the
adaptation process corresponding to atmospheric-like
(Fig. 4a) and corrector friendly (Fig. 4b) phase aberrations
are shown in Fig. 5. Both residual phase patterns have
2p phase cuts (phase jumps). Despite the presence of 2p
phase cuts the achieved adaptation level for corrector
friendly aberrations was near ^St& ' 0.995.

F. Decoupled Stochastic Parallel Gradient Descent
System with Phase Contrast Sensors
As has been pointed out, the interferometer is an ideal
sensor for a D-SPGD-type adaptive controller because it
provides point-to-point intensity phase mapping and
hence control channel decoupling. On the other hand,
the interferometric sensor cannot be used in most adap-
tive optics systems, as it requires an undistorted refer-
ence wave. Consider the more practical D-SPGD system
configurations based on the phase contrast sensors de-
scribed in Section 4. Numerical simulations were per-
formed for both PDI and ZF wave-front sensors. For
each sensor we used two D-SPGD controllers: Eqs. (15a)
(J2 controller) and (16a) (J3 controller). The ensemble-
averaged adaptation evolution curves ^St& for each of the
examined systems are shown in Fig. 6a for corrector
friendly and in Fig. 6b for atmospheric-like aberrations.
For input field phase aberrations we used the same set of
phase screens as for the D-SPGD system with interfero-
metric sensor. For this reason the efficiency of the phase
contrast sensor D-SPGD systems can be directly com-
pared with the efficiency of the adaptive system with in-
terferometric sensor given by curves 1 in Fig. 6. For sys-
tems with a phase contrast sensor, as seen from the
adaptation curves in Fig. 6a the fastest convergence was
exhibited by the D-SPGD system with J2 controller and
Zernike sensor (curve 2). A comparable convergence rate
was observed for the D-SPGD system with PDI sensor
(curves 3 and 4). The J3 controller with Zernike wave-
front sensor (curves 5) had the worst convergence rate.
This result is quite expected. Recall that metric J3 is
proportional to the wave-front sensor output field power
and that the ZF affects only the wave’s zero spatial spec-
tral component phase. For a Zernike sensor with unlim-
ited aperture the output power is a constant value, and
hence metric J3 is independent of wave-front phase
change. In the adaptive system that we analyzed, the ZF
had a limited aperture. For this reason the dependence
of J3 on phase aberrations is weak, resulting in relatively
slow adaptive system convergence.

As seen from Fig. 6 the D-SPGD controllers with phase-
contrast sensors had approximately ten times faster con-
vergence than did the SPGD controller (compare curves 2,
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3, and 4 in Fig. 6 with SPGD curves 6). The residual
phase patterns in Fig. 6 show the existence of 2p phase
cuts similar to the 2p phase cuts observed with the inter-
ferometric sensor (Fig. 5).

Consider numerical analysis results of the D-SPGD
system with PDI (J3 controller) performed for different
values of the Fried parameter r0 . Adaptive system per-
formance was evaluated by using a Strehl ratio StM
achieved after M iterations. For fixed r0 the adaptation
process was repeated with 50 phase distortion realiza-
tions, and the obtained values St were averaged. The av-
eraged Strehl ratios ^StM& are presented in Fig. 7 as func-
tions of the ensemble-averaged phase fluctuation
standard deviation of the input field s in 5 ^ sw& for differ-

Fig. 7. The averaged Strehl ratios ^StM& achieved after M itera-
tions of the adaptation process versus input phase standard de-
viation s in for the low-resolution D-SPGD adaptive system with
PDI and control algorithm (16a) (J3 controller). Numbers in pa-
rentheses correspond to Strehl ratio values for s in .

Fig. 6. Averaged Strehl ratio versus iteration number for the
low-resolution D-SPGD adaptive system with different wave-
front sensor types: (a) for corrector friendly, (b) for atmospheric-
like phase distortions. The adaptation curves 1–5 correspond to
1, interferometer with reference wave; 2 and 5, ZF; 3 and 4, PDI.
Labels in parentheses correspond to wave-front sensor type (I is
interferometer, etc.) and controller [J2 for (15a) and J3 for (16a)].
The curves 6 correspond to the SPGD controller. Gray-scale im-
ages show residual phase patterns corresponding to the D-SPGD
system with PDI (dynamical range is 4p rad.).
ent iteration numbers M. The results in Fig. 7 show that
efficient phase distortion compensation can be achieved
over a wide range of phase distortion amplitudes s in even
with a relatively low-resolution adaptive system. The
small differences between curves corresponding to
M 5 20 and M 5 40 iterations suggests that saturation
of the adaptation process occurs during the first 20–40 it-
erations.

G. Decoupled Stochastic Parallel Gradient Descent
System with Continuously Deformed Mirror
In the D-SPGD adaptive optics system analyzed above,
we assumed a geometrical match between the wave-front
corrector and sensor: $Zl(r)% 5 $Sl(r)%. This can be
easily achieved in the case of a piston-type wave-front
corrector having stepwise influence functions
$S0(r 2 rl)%. Consider now a wave-front corrector hav-
ing a continuously deformed surface with the Gaussian-
type influence functions S(r 2 rl) 5 exp(2ur 2 rlu2/w2)
(l 5 1 ,..., 127), where w is influence function width.
Assume that corrector and sensor are not matched but
still have similar geometries: vectors $rl% coincide with
centers of hexagonally shaped sensor subapertures. Sen-
sor subapertures are described by stepwise functions
$Z0(r 2 rl)% defined over nonoverlapping hexagonal ar-
eas $V l% of radius d. A numerical analysis was per-
formed for the D-SPGD adaptive system with PDI and
J3 controller. For a fixed value w of the influence func-
tion width 50 corrector friendly phase screens wg(r)
were generated. An example of corrector friendly aber-
rations wg(r) composed by Gaussian influence functions
$S(r 2 rl)% with w 5 d together with sensor subaperture
geometry is shown in Fig. 8a. Patterns of the residual

Fig. 8. Adaptive system with ‘‘mismatched’’ wave-front correc-
tor and sensor: (a) sensor friendly aberration wg(r) superim-
posed with a hexagonal grid of wave-front sensor subapertures
for w 5 d, (b) pattern of the residual phase aberration d g(r), (c)
sensor output intensity Id(r); both (b) and (c) are after 60 itera-
tions of the D-SPGD controller (16a); (d) the same as (b) for
w 5 1.2d.
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phase aberration d g(r) and the sensor’s output intensity
Id(r) are shown in Figs. 8b and 8c. The residual aberra-
tion d g(r) for w 5 1.2d is shown in Fig. 8d. From the
d g(r) and Id(r) patterns in Fig. 8 one can see that border
lines of 2p phase cuts on the wave-front corrector always
correspond to border lines of the receiver subapertures.

Strehl ratio adaptation curves for corrector friendly ab-
erration compensation using the D-SPGD system with a
wave-front corrector having different normalized width
values w/d (mismatch parameter) are presented in Fig. 9.
As expected, the most efficient phase distortion compen-
sation occurs for w < d (curves w/d 5 0.8 and w/d
5 1.0). In this case the cross talk between control pa-
rameter perturbations $dul% and the corresponding per-
turbation of the metric vector components $d Ī l

(n)% is small.
With increase of w/d, cross talk increases and corre-
spondingly the efficiency of D-SPGD control declines
(compare curves w/d 5 1 and w/d 5 1.4 in Fig. 9). The
best convergence rates occurred in the system with
matched sensor/receiver subaperture sizes (curve w/d
5 1). Note that the efficiency of the conventional SPGD
algorithm also declines when the ratio w/d increases
(compare the two SPGD curves in Fig. 9). The intensity
patterns Id(r) shown Fig. 9 are quite different for differ-
ent mismatch parameter values w/d. The border lines
in the patterns Id(r) for w/d 5 1.2 correspond to the 2p
phase cut areas in Fig. 8d.

6. HIGH-RESOLUTION DECOUPLED
STOCHASTIC PARALLEL GRADIENT
DESCENT ADAPTIVE
WAVE-FRONT CONTROL
A. Numerical Model
In the high-resolution (spatially distributed) D-SPGD
adaptive system model both the piston-type pixelated
wave-front corrector and the wave-front sensor had circu-
lar apertures of diameter D 5 0.85 Na, where a is the cor-
rector element size and N 5 256 is the numerical grid
size. Input wave phase aberrations w(r) as well as wave-
front perturbations du(r) were modeled by using the
same realizations of a statistically homogeneous and iso-
tropic random function as in the case described above for

Fig. 9. Averaged Strehl ratio adaptation curves for corrector
friendly aberration compensation with the D-SPGD system and
‘‘mismatched’’ wave-front corrector and sensor. Curves are la-
beled by the mismatch parameter w/d. Evolution curves for the
SPGD controller are indicated by dots. Gray-scale images cor-
respond to the intensity patterns Id(r) after 60 iterations: left,
for w/d 5 0.8; right, for w/d 5 1.2.
the low-resolution adaptive system: atmospheric-like
phase screens with Andrews power spectrum for w(r) and
random function with zero mean and Gaussian power
spectrum for du(r).

In addition to the input beam with uniform intensity
distribution we also considered an adaptive system with
nonuniform intensity. In this case the input wave com-
plex amplitude A in(r) 5 A0(r)exp@iw(r)# had both ran-
dom amplitude A0(r) and random phase w(r). To model
input wave intensity scintillations the following tech-
nique was used: a numerical representation of a wave
with complex amplitude A(r) 5 A0 exp@iz(r)# having uni-
form intensity I0 5 uA0u2 and random phase z(r) was gen-
erated. Free-space propagation of this wave over a dis-
tance z 5 L was modeled by using a fast Fourier
transform routine. The complex amplitude modulus at
the distance z 5 L was used as an input wave amplitude:
A0(r) 5 uAz5L(r)u. For both random phases w(r) and
z(r) the same phase screen realizations with Andrews
power spectrum were used. This technique allows us to
take into account changes in the intensity scintillations
accompanying variations in the phase distortion ampli-
tudes (for example, due to change of the Fried parameter).
The strength of the input wave intensity fluctuations was
controlled by changing the propagation distance L. In-
tensity scintillations were characterized by the normal-
ized standard deviation of the intensity fluctuations aver-

Fig. 10. High-resolution D-SPGD adaptive system adaptation
process efficiency for uniform (solid curves) and random (dashed
curves) input wave intensity distributions: (a) averaged Strehl
ratio ^St& versus iteration number, (b) averaged Strehl ratio
achieved after M iterations of the adaptation process ^StM& ver-
sus input phase standard deviation s in . Adaptation curves 1–5
correspond to 1, interferometer with reference wave; 2 and 5, ZF;
3 and 4, PDI. Labels in parentheses are the same as in Fig. 5.
The standard deviation for intensity scintillations in (a) was
s1 5 0.6. The D-SPGD system in (b) corresponds to the J3 con-
troller with PDI. A and B correspond to gray-scale images of the
input wave intensity patterns in (a) for point s in 5 1.7 (A) and
(b) for point s in 5 3.4 (B).
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aged over the aperture sI , defined as

sI
2 5 *@ uA0~r!u2 2 Ī#2d2r/ Ī2,

where Ī is aperture-averaged input intensity. In Fig. 10
random patterns (A and B) of the input wave intensity
modulations corresponding to phase screens character-
ized by different phase-fluctuation values sw are shown
(the propagation distance L was the same for both inten-
sity patterns in Fig. 10).

B. Numerical Results
Adaptive phase distortion compensation efficiency was
examined for adaptive system configurations with the fol-
lowing wave-front sensors: interferometer with refer-
ence wave, ZF, and PDI. Wave-front phase control was
based on D-SPGD algorithms (15b) and (16b) aimed at
minimization of the cumulative metrics (14a) and (14c).
Recall that for the high-resolution systems metric, (14a)
coincides with both (14b) and sharpness function (1). Re-
sults of the numerical simulations are presented in Fig.
10 for both uniform (solid curves) and random (dashed
curves) intensity distributions. As seen from the Strehl
ratio adaptation evolution curves in Fig. 10a, all consid-
ered high-resolution D-SPGD adaptive system types dem-
onstrated exceptionally fast convergence. For the inter-
ferometric and Zernike sensors with J2 controller the
Strehl ratio increased up to the 80% level within the
first N80% ; 10–15 iterations. For the conventional
SPGD control algorithm the corresponding convergence
rate for the high-resolution system was on the order of
N80% ; 103 –104 iterations.14 In the case of the Zernike
sensor the D-SPGD system did not completely remove the
phase distortions: the achieved averaged Strehl ratio
was near ^St& ' 0.9 (curve 2 in Fig. 10). In contrast, in
the D-SPGD systems based on the interferometer and the
PDI (J3-controller), input wave phase aberrations were
completely removed (^St& ' 0.99) during the first 40 it-
erations.

The average Strehl ratio ^StM& achieved during the
first M iterations as a function of the input phase distor-
tion standard deviation s in is shown in Fig. 10b for the
D-SPGD system with PDI. For the given phase distor-
tion range the Strehl ratio ^St& 5 0.8 was achieved after
20 iterations and ^St& 5 0.98 after 40 iterations.

The presence of intensity scintillations resulted in
slower adaptation convergence. The compensation level
achieved was also decreased: for the J3 controller with
PDI, ^St& was near 0.99 for a uniform intensity and
^St& ' 0.87 for intensity scintillations with sI 5 0.6
(compare curves 3 and 4 in Fig. 10a). In the model
considered here, input wave intensity scintillations
decreased when s in was decreased: from sI 5 1.0 for
s in 5 3.4 to sI 5 0.6 for s in 5 1.7, and further up to
sI 5 0 for s in 5 0 (see gray-scale images A and B in Fig.
10a). Despite the strong intensity scintillations, the
adaptive system with D-SPGD controller was able to ef-
fectively suppress phase distortions over a wide range of
input phase distortions (dashed curves in Fig. 10b).

C. Adaptive Perturbations
In all simulations considered above, a set of realizations
of the random function du(r) with Gaussian power spec-
trum and fixed spatial correlation radius lp 5 0.07D were
used as wave-front phase perturbations (see the perturba-
tions pattern in Fig. 4c). In fact, the correlation radius lp
is an additional parameter that can be used for further
adaptation process convergence rate improvement. Fig-
ure 11 shows averaged adaptation evolution curves for
the D-SPGD controller with PDI for two different values
of the correlation radius lp (curves 1 and 2). Decreasing
lp resulted in faster convergence (curve 2), but the adap-
tation level achieved was lower. This suggests that the
phase perturbation spatial statistics should be adaptively
changed during the adaptation process to match the con-
tinuing changes in the residual phase distortions. This
adaptive perturbation technique was analyzed for the
case of the conventional SPGD controller and resulted in
noticeable convergence rate improvement.14 The adap-
tive perturbation technique applied here resulted in
nearly a 10–15% decrease in the convergence rate. A
more substantial improvement in the convergence rate oc-
curred with the use of ‘‘mixed’’ perturbations du(r) com-
posed of a random function realization with Gaussian
power spectrum and fixed spatial correlation radius
dug(r) and a component proportional to the sensor output
intensity distribution Id(r): du(r) 5 kdug(r) 1
(12 k)Id(r), where 0 , k , 1 is a weighting coefficient.
As seen in Fig. 11 (curve 3) the use of mixed perturbations
in the D-SPGD system with PDI resulted in adaptation
process convergence during the first ten iterations. Ow-
ing to the dependence of Id(r) on the residual phase d (r),
the presence of the component Id(r) automatically pro-
vides the ‘‘right’’ spatial scale for the perturbations at the
beginning of the adaptation process. As d (r) decreases
after the first few iterations, the relative influence of the
random-perturbation component dug(r) increases, result-
ing in efficient removal of the remaining high-spatial-
frequency components of d (r). An example of mixed per-
turbation patterns du(r) at the beginning and at the end
of the adaptation process are shown in Fig. 11.

7. CONCLUSION
The D-SPGD adaptive optics architectures presented
here offer an attractive alternative to both wave-front
phase conjugation and conventional gradient descent

Fig. 11. Averaged Strehl ratio evolution curves for the D-SPGD
controller with PDI, perturbations with Gaussian power spec-
trum, and different values of the correlation radius lp (curve 1
and 2) and for ‘‘mixed’’ perturbations (curve 3): 1, lp 5 0.07D; 2,
lp 5 0.035D; 3, k 5 0.6, lp 5 0.035D. Gray-scale images rep-
resent mixed perturbation patterns du(r) at n 5 2 (left) and
n 5 30 (right).
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optimization based adaptive optics. The key advantages
of the D-SPGD approach are as follows: (1) fast conver-
gence practically independent of system spatial resolu-
tion, (2) the parallel nature of the control algorithm, (3)
robustness with respect to input wave intensity scintilla-
tions, (4) and flexibility in choice of wave-front sensor.
The important next step in the development of this tech-
nique is implementation of the D-SPGD controller as a
high-resolution, parallel, low-power, VLSI microelectronic
system. Recent successful demonstration of adaptive
wave-front control using VLSI implementation of the con-
ventional stochastic parallel gradient descent optimiza-
tion technique12,22 shows its technical viability for solving
this challenging problem.
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