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1. INTRODUCTION
Atmospheric turbulence due to random variations in the
refractive index of the atmospheric channel significantly
limits the range and the performance of free-space laser
communication systems. Atmospheric turbulence-
induced random distortions of the optical phase result in
intensity fading at the receiver, giving rise to system bit
error rates potentially orders of magnitude higher than
those in the absence of turbulence. There has been grow-
ing interest in developing techniques to overcome the
turbulence-induced intensity fades that cause these com-
munication system bit error rates. Techniques investi-
gated to date include using multiple transmitter
apertures,1,2 adaptively controlling the transmitter beam
size,3 and utilizing adaptive optics techniques.4,5 None-
theless, an optimal solution to the problem of turbulence-
induced intensity fading has yet to be identified.
Multiple-aperture systems are large and bulky, and the
electronics can be unnecessarily complex. In the pres-
ence of the strong intensity fluctuations characteristic of
ground-to-ground propagation paths, traditional adaptive
optics techniques are not effective because of difficulties
in obtaining wave-front measurements.6 New ap-
proaches to the problem of reducing turbulence-induced
intensity fading in laser communication systems are still
of much interest.

Here we propose an approach where the spatial coher-
ence of the signal-carrying laser beam is partially de-
stroyed before it is launched into the atmospheric chan-
nel. This will increase the receiver beam size and thus
reduce the average received power but at the same time
will also decrease pointing errors and may reduce
turbulence-induced signal fading due to intensity scintil-
lations. A theoretical treatment by Banach et al. estab-
1084-7529/2002/091794-09$15.00 ©
lished that as the initial longitudinal and lateral field co-
herence decreases, intensity fluctuations of the observed
radiation also decrease.7 More recently, two experiments
have suggested that the use of a partially coherent source
beam does indeed reduce intensity scintillations at the
receiver.8,9

Previous studies of the propagation of partially coher-
ent fields in free space are well summarized in Ref. 10.
In particular, Friberg and Sudol11 derive expressions for
the beam size and the phase front radius of curvature of a
partially coherent collimated beam in free space formu-
lated so that the beam waist coincides with the transmit-
ter. The propagation of partially coherent optical fields
in atmospheric turbulence has been considered in several
studies. In Ref. 12 Belenkii and Mironov perform an
asymptotic analysis of the spatial mutual coherence func-
tion of a partially coherent beam in strong turbulence and
estimate the accuracy of a quadratic approximation, and
in Ref. 13 Belenkii et al. make observations concerning
the influence of the partial coherence of a light source on
the beam coherence radius. In Ref. 14 Wang and Plo-
nus derive an expression for the mutual intensity func-
tion of a partially coherent laser source for focused and
collimated beams. Irradiance scintillations of a partially
coherent light source are considered by Fante in Ref. 15
and by Baykal et al. in Ref. 16.

In this paper we explore the properties of a partially
(spatially) coherent quasi-monochromatic Gaussian laser
beam propagating in atmospheric turbulence. Real light
sources are in fact partially coherent, and a consideration
of partial coherence effects may be important when con-
sidering the propagation of optical energy through a tur-
bulent atmosphere. Expressions for average intensity,
beam size, phase front radius of curvature, and wave-
2002 Optical Society of America
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front coherence length are obtained from an analytic ex-
pression derived for the cross-spectral density. We use a
Gaussian beam wave model having a parabolic wave-
front phase envelope that allows full consideration of the
focusing or diverging characteristics of the laser beam.
The analytic results obtained here illustrate dependence
of the derived quantities on both the degree of partial co-
herence and the effects of atmospheric turbulence and
provide a better understanding of the implications for us-
ing a partially coherent laser beam in a free-space optical
communication system.

2. FREE-SPACE PROPAGATION OF A
GAUSSIAN BEAM
At z 5 0 the free-space electric field of a unit-amplitude,
lowest-order paraxial Gaussian beam propagating pre-
dominantly along the z axis can be represented in the
form17,18

U~r, 0! 5 expF2S 1

wo
2 1

jk

2Ro
D r2G , (1)

where wo is the transmitter beam radius (beam size), Ro
is the radius of curvature of the phase front, k 5 2p/l is
the optical wave number, and r 5 (x2 1 y2)1/2 is the
transversal distance from the beam center; for simplicity
we introduce the notation r2 5 uru2. The propagation ge-
ometry is shown in Fig. 1.

After propagating a distance z from the transmitter,
the optical field becomes19

U~r, z ! 5
exp~ jkz !

r̂ 1 jẑ
expF2

1

r̂ 1 jẑ S 1

wo
2 1

jk

2Ro
D r2G ,

(2)

where r 5 (x2 1 y2)1/2 is the transversal distance from
the beam center in the receiver plane. In Eq. (2) we have
used the transmitter beam parameters19–21

r̂~z ! 5
Ro 2 z

Ro
, ẑ 5

z

ẑd
, (3)

where the normalized focusing parameter r̂ characterizes
focusing properties of the beam in terms of deviation of
the wave-front curvature from the condition of optimal fo-
cusing Ro 5 z, and ẑd 5 kwo

2/2 is diffractive distance.
In this notation convergent (focused) beams are indicated
by positive Ro and divergent beams by negative Ro . At
the beam waist, Ro is infinite and the beam size takes its
smallest value, designated as the beam waist size wb .
In terms of the focusing parameter, it follows that conver-

Fig. 1. Propagation geometry.
gent beams are defined by r̂ , 1, collimated beams by r̂
5 1, and divergent beams by r̂ . 1. In Eqs. (3) and
throughout this paper, the functional dependence of r̂ and
ẑ on z is to be understood.

The beam size w(z) and the phase front radius of cur-
vature R(z) at the receiver plane are expressed in terms
of the transmitter beam parameters as

w~z ! 5 wo~ r̂2 1 ẑ2!1/2, R~z ! 5
z~ r̂2 1 ẑ2!

r̂~1 2 r̂ ! 2 ẑ2 .

(4)

For a collimated beam with the waist at z 5 0, r̂ 5 1 and
we obtain the well-known expressions describing beam
size and phase front radius of curvature as a function of z:

w~z ! 5 wo@1 1 ~lz/pwo
2!#1/2,

R~z ! 5 z@1 1 ~pwo
2/lz !#1/2. (5)

In terms of the beam size w(z), the average intensity at
the receiver is expressed as

I~r, z ! 5
wo

2

w2~z !
expF 22r2

w2~z !
G . (6)

Other relations involving these parameters are discussed
in Ref. 20. Since it was first proposed, this beam wave
model has been used in a number of studies concerning
laser propagation through random media.23,24

3. EXTENDED HUYGENS–FRESNEL
PRINCIPLE
The complex field a distance z from the transmitter can be
represented, using the Huygens–Kirchhoff principle, as

U~r, z ! 5 EE d2rG~r, r, z !U~r, 0!, (7)

where U(r, 0) is the field at the transmitter plane z
5 0. The paraxial (parabolic) wave equation derived
from the Helmholtz equation has the Green’s-function so-
lution

G~r, r, z ! 5
2jk

2pz
expF jkz 1

jk

2z
ur 2 ru2 1 C~r, r!G ,

(8)

where C(r, r) represents the random part of the complex
phase of a spherical wave due to propagation in a turbu-
lent medium. Using this Green’s-function solution, we
can express Eq. (7) in terms of the Huygens–Fresnel
integral25,26:

U~r, z ! 5
2jk

2pz
exp~ jkz !EE d2rU~r, 0!

3 expF jk

2z
ur 2 ru2 1 C~r, r!G . (9)

The Huygens–Fresnel principle states that each point on
a wave front generates a spherical wave and that the en-
velope of these spherical waves constitutes a new wave
front. The expression given in Eq. (9), which includes
the effects of atmospheric turbulence on propagation
through the quantity C(r, r), is commonly called the ex-
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tended Huygens–Fresnel principle and is applicable to
both weak and strong turbulence fluctuation regimes.

4. CROSS-SPECTRAL DENSITY FUNCTION
FOR A PARTIALLY COHERENT LASER
BEAM IN TURBULENCE
Historically, wave propagation through atmospheric tur-
bulence has been characterized in terms of the complex
mutual coherence function G(r1 , r2 ; t)
5 ^E(r1 ; t)E* (r2 ; t 1 t)&, where ^•& denotes ensemble
averaging and E is the optical frequency electric field. In
contrast, recent treatments10,11 of the propagation of par-
tially coherent fields have focused on the cross-spectral
density function W(r1 , r2 ; n)5 ^U(r1 ; n)U* (r2 ; n)&,
which is the temporal Fourier transform of G(r1 , r2 ; t).
The cross-spectral density function, which obeys the
Helmholtz equation, is a measure of the correlation be-
tween the fluctuations of two field components at the
same frequency. If the field is strictly monochromatic or
sufficiently narrow band, so that

ur2 2 r1u

c
!

1

Dn
, (10)

then both characterizations yield identical results (see
Appendix A). In a laser communication system a typical
value for ur2 2 r1u is on the order of 10 cm, which requires
that Dn , 1 GHz.

Here we consider the behavior of W(r1 , r2 ; n 5 no),
where no is the center frequency of a quasi-
monochromatic Gaussian laser beam and the dependence
on no is to be understood. The cross-spectral density
W(r1 , r2 , z) at the receiver can be represented as10,26

W~r1 , r2 , z ! 5 ^U~r1 , z !U* ~r2 , z !&

5
1

~lz !2 EEEE d2r1d2r2W~r1 , r2 , 0!

3 ^exp@C~r1 , r1! 1 C* ~r2 , r2!#&

3 expH jk

2z
@~r1 2 r1!2 2 ~r2 2 r2!2#J .

(11)

In Eq. (11) the quantity W(r1 , r2 , 0) is the cross-spectral
density at the transmitter, which we obtain by using a
method based upon an approach first proposed by
Schell.27 Consider that a phase diffuser is placed over
the laser transmitter aperture, so that the emitted field
can be modeled as

Ũ~r, 0! 5 U~r, 0!exp@ jwd~r!#, (12)

where the deterministic field U(r, 0) is given by Eq. (1)
and the quantity exp@ jwd(r)# represents the small random
perturbation introduced by the phase diffuser.

If we assume that the ensemble average of the spatially
dependent random phases introduced by the diffuser is
Gaussian and depends only on the separation distance
and not on the actual location on the diffuser, the cross-
spectral density at the transmitter can be expressed in
the form of a Gaussian Schell-model beam:
W~r1 , r2 , 0! 5 ^Ũ~r1 , 0!Ũ* ~r2 , 0!&

5 U~r1 , 0!U* ~r2 , 0!

3 ^exp@ jwd1~r1!#exp@2jwd2~r2!#&

5 U~r1 , 0!U* ~r2 , 0!expF2~r1 2 r2!2

2sg
2 G .

(13)

In Eq. (13) the quantity sg
2 is the variance of the Gaussian

describing the ensemble average of the random phases.
The partial coherence properties of the transmitter source
are described by the variance sg

2, which is determined by
the characteristics of the diffuser. Note that when sg

2 is
infinite, the cross-spectral density is completely described
by the deterministic field.

Using the sum and difference vector notation

rS 5
1
2 ~r1 1 r2!, rd 5 r1 2 r2 ,

rS 5
1
2 ~r1 1 r2!, rd 5 r1 2 r2 ,

we can express the cross-spectral density at the transmit-
ter as

W~rS , rd , 0! 5 expH 2
1

wo
2 F1

2
~rd

2 1 4rS
2 !G

2
jk

2Ro
~2rd • rS! 2

rd
2

2sg
2J , (14)

and we can also write

expH jk

2z
@~r1 2 r1!2 2 ~r2 2 r2!2#J

5 expH jk

z
@~rS 2 rS! • ~rd 2 rd!#J . (15)

Yura28 shows that the random part of the complex
phase of a spherical wave propagating in homogeneous
turbulence can be approximated by

^exp~C~r1 , r1! 1 C* ~r2 , r2!!&

> expF21

ro
2 ~rd

2 1 rd • rd 1 rd
2 !G , (16)

where ro(z) 5 (0.55Cn
2k2z)23/5 is the coherence length of

a spherical wave propagating in turbulence and Cn
2 is the

refractive-index structure parameter describing the
strength of atmospheric turbulence. We can now express
the cross-spectral density at the field point:
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W~rS , rd , z !

5
1

~lz !2 EE d2rdEE d2rS expS 22rS
2

wo
2 D

3 expF2jkrS • rd

Ro
1

jkrS • ~rd 2 rd!

z G
3 expF2

rd
2

2wo
2 2

rd
2

2sg
2 2

rd
2 1 rd • rd 1 rd

2

ro
2

2
jkrS • ~rd 2 rd!

z G . (17)

Evaluating this integral, we obtain the expression for the
cross-spectral density at the receiver:

W~rS , rd , z ! 5
wo

2

wz
2~z !

expH 2rd
2S 1

ro
2 1

1

2wo
2 ẑ2D

1
2jrS • rd

wo
2 ẑ J expF 22rS

2

wz
2~z !

G
3 expF2~ jf !2rd

2

2wz
2~z !

GexpF22jf rS • rd

wz
2~z !

G ,

f [
r̂

ẑ
2 ẑ

wo
2

ro
2 . (18)

A. Beam Size
In Eq. (18) we have defined the beam size (radius) wz(z)
of a partially coherent beam in turbulence and the global
coherence parameter z as

wz~z ! 5 wo~ r̂2 1 z ẑ2!1/2, z 5 1 1
wo

2

sg
2 1

2wo
2

ro
2 .

(19)

Physically speaking, the global coherence parameter is a
measure of the global degree of coherence of light across
each transverse plane along the propagation path. For a
coherent beam ( sg → `) in the absence of atmospheric
turbulence (ro → `), the global coherence parameter re-
duces to unity and the beam size reduces to its diffractive
equivalent given in Eqs. (4). Note that the global coher-
ence parameter z is a function of the path length z
through the coherence length of a spherical wave propa-
gating in turbulence, given by ro(z) 5 (0.55Cn

2k2z)23/5.
It is also useful to define a related dimensionless quan-

tity, the source coherence parameter, as

zS 5 1 1
wo

2

sg
2 . (20)

The degree of partial (spatial) coherence of the source la-
ser beam at the transmitter is completely specified by the
parameter zS . A quantity similar to the source coher-
ence parameter zS was defined earlier by Friberg and
Sudol11 and later used by Mandel and Wolf10 to describe
partial coherence properties of the source beam.

It was shown in Ref. 29 that an earlier derivation for
the size of a partially coherent beam in turbulence14 con-
tains an error. However, we can compare the expression
in Eq. (19) with the expression for a partially coherent
collimated beam in free space given in Refs. 10 and 11.
For a collimated beam ( r̂ 5 1, ẑ 5 z/0.5kwb

2) with the
beam waist wb located at the z 5 0 (transmitter) plane,
Eq. (19) takes the form

wz~z ! 5 wb~1 1 zSẑ2!1/2 5 wbF1 1 S 2z

kd wb
D 2G1/2

,

(21)

where 1/d 2 5 1/4sS
2 1 1/sg

2 is defined in Ref. 10. If we
equate the square of the transmitter beam size (beam
waist) with two standard deviations of the Gaussian field
(wb

2 5 4sS
2 ), it follows that

wz~z ! 5 wbD~z ! 5 2sSD~z !,

D~z ! 5 F1 1 S 2z

kd wb
D 2G1/2

, (22)

where D(z) is the expansion coefficient of the beam.
Thus when free-space propagation is assumed, the beam
size obtained here for a partially coherent beam in atmo-
spheric turbulence exactly reduces to its free-space
equivalent obtained in Ref. 10.

Figure 2 shows the normalized beam size wz(z)/wo
2 as a

function of the normalized distance ẑ for values of the
source coherence parameter zS representing beams from
the coherent (zS 5 1) to the partially coherent (zS
5 26). As the global coherence parameter increases
past unity, the spatial coherence of the beam decreases
and the beam begins to increase beyond its diffractive
size. However, the beam still retains to some extent its
ability to focus, although this ability decreases as coher-
ence is lost.

Figure 3 compares behavior of the coherent beam with
that of the partially coherent beam (zS 5 26) for r̂
5 0.001 (convergent beam) and r̂ 5 1 (collimated beam).
The partially coherent beams behave like the coherent
beams, except that the expected increase in normalized
beam size occurs at a smaller value of ẑ, with the magni-
tude of this shift being a function of the size of the source
coherence parameter zS . A similar shift of the beam
waist toward the transmitting aperture was noted earlier

Fig. 2. Normalized beam size wz
2(z)/wo

2 as a function of normal-
ized distance ẑ 5 z/ ẑd for different values of the source coher-
ence parameter zS .
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for coherent beams propagating in turbulence.30 In Ref.
30 the magnitude of this shift was dependent on the
strength of turbulence and could potentially be on the or-
der of hundreds of meters or more for strong turbulence.
Here we find that for a partially coherent source beam the
magnitude of this shift is dependent on the degree of spa-
tial coherence.

Equation (19) offers a method for calculating the de-
sired transmitter diffuser characteristics in order to ob-
tain the optimal beam footprint at the receiver for given
turbulence conditions and thus reduce pointing errors.
After propagating 2 km through moderate atmospheric
turbulence, a collimated beam (l 5 0.785 mm) with a
transmitter beam size of 2.5 cm will have a beam foot-
print of only 9.6 cm. With such a small beam footprint,
the probability of pointing errors is very high. By placing
a phase diffuser directly in front of the laser transmitter,
one can increase the beam size at the receiver to accom-
modate receiver motion due to tower or building sway,
beam motion due to atmospheric turbulence effects, etc.

Fig. 3. Normalized beam size wz
2(z)/wo

2 as a function of normal-
ized distance ẑ 5 z/ ẑd for a coherent (zS 5 1) and a partially co-
herent (zS 5 26) collimated beam ( r̂ 5 1) and for a coherent and
a partially coherent beam with focusing ( r̂ 5 0.001).

Fig. 4. Comparison of the beam size for a coherent collimated
beam with beam sizes for two partially coherent collimated
beams with different source coherences in moderate turbulence
after propagating 2 km.
As shown in Fig. 4, if we choose zS 5 100, the beam foot-
print after propagation of 2 km through moderate atmo-
spheric turbulence will be 41 cm, and for zS 5 500 the
beam footprint will be 90 cm. However, since increasing
the beam footprint also reduces the power incident on a
fixed-size receiver, it is important not to overestimate the
receiver beam size necessary to reduce pointing errors.

B. Average Intensity
The average intensity ^I(r)& for a unit-amplitude beam is
obtained from Eq. (18) when r1 5 r2 , so that rS 5 r and
rd 5 0:

^I~r!& 5
wo

2

wz
2~z !

expF 22r2

wz
2~z !

G . (23)

Note that the combined effects of partial coherence and
turbulence operate solely on the normalized distance ẑ
through the beam size wz(z). The expression given in
Eq. (23) for the average intensity exactly reduces to the
expression for a coherent beam in free space given in Eq.
(6).

Using the notation of Ref. 10, define the 1/e falloff in
intensity as r̄S(z). Recalling Eq. (22), write

r̄S~z ! 5
wz~z !

A2
5

2sSD~z !

A2
5 A2sSD~z !, (24)

which exactly corresponds to the result given in Ref. 10
for a partially coherent collimated beam propagating in
free space.

C. Phase Front Radius of Curvature
The phase front radius of curvature for a partially coher-
ent laser beam propagating in atmospheric turbulence is
obtained from the complex portion of Eq. (18):

$W~rS , rd , z !% 5
wo

2

wz
2~z !

expF2jkrS • rd

Rz~z !
G , (25)

where the radius of curvature Rz(z) is defined as

Rz~z ! 5
z~ r̂2 1 z ẑ2!

f ẑ 2 z ẑ2 2 r̂2 , f [
r̂

ẑ
2 ẑ

wo
2

ro
2 . (26)

For a coherent beam in free space, this expression for the
radius of curvature reduces to its diffractive form given in
Eqs. (4). Equation (26) also exactly reduces to the ex-
pression for a partially coherent collimated beam propa-
gating in free space given in Ref. 11.

The normalized radius of curvature for a collimated
beam is shown in Fig. 5 as a function of normalized dis-
tance ẑ for different values of the source coherence pa-
rameter zS . For a diffractive beam in free space the ra-
dius of curvature is infinite at ẑ 5 0 since the beam waist
is collocated with the transmitter, and again approaches
infinity when ẑ becomes large. As zS increases, indicat-
ing a less coherent source beam, observe the strong focus-
ing [pronounced dip in Rz(z)] that occurs for small values
of ẑ. For values of ẑ . 2 there is an increasingly dimin-
ished effect on the radius of curvature due to partial co-
herence.
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While in Fig. 5 we assume that any increase in global
coherence is due to a less coherent source, in Fig. 6 we
specifically consider the role of atmospheric turbulence by
setting zS 5 1. Note that when atmospheric turbulence
is present, the radius of curvature displays increased fo-
cusing for all values of ẑ, not just for values of ẑ , 2.
Compare the curve for z 5 26 in Fig. 5 with the curve for
z 5 17 in Fig. 6, both of which have an equivalently sharp
minimum in the radius of curvature occurring at approxi-
mately ẑ 5 0.3. Through the influence of ro on the aux-
iliary beam parameter f, the radius of curvature is more
strongly affected by turbulence than is the beam size. In
spite of the different global coherence parameter values,
the curves in Figs. 5 and 6 are quite similar except at
higher values of ẑ, where because of the influence of tur-
bulence the radius of curvature does not eventually ap-
proach its diffractive value, as it does in Fig. 5.

Fig. 5. Normalized radius of curvature Rz(z)/(0.5wo
2k) as a

function of normalized distance ẑ for different values of zS .

Fig. 6. Normalized radius of curvature Rz(z)/(0.5wo
2k) as a

function of normalized distance ẑ for varying strengths of atmo-
spheric turbulence. The source coherence parameter zS 5 1 for
each curve, so that any partial coherence effects are due to atmo-
spheric turbulence.
D. Wave-Front Coherence
To obtain the complex degree of coherence of the partially
coherent optical wave, consider the normalized
quantity10,14

m~rd , z ! 5
W~0, rd , z !

W~0, 0, z !

5 expF2rd
2S 1

ro
2 1

1

2wo
2 ẑ2D GexpF2~ jf !2rd

2

2wz
2~z !

G .

(27)

After simplification we obtain an analytic expression for
the complex degree of coherence m(rd , z):

m~rd , z ! 5 expF2
rd

2

ro
2 S 1 1

ro
2

2wo
2 ẑ2

2
f 2ro

2

2wz
2~z !

D G
5 expS 2

rd
2

rC
2 D . (28)

In Eq. (28) rC is the coherence length of the optical field at
the receiver and is given by

rC 5 roS 1 1
ro

2

2wo
2ẑ2

2
f 2ro

2

2wz
2~z !

D 21/2

. (29)

An expression given earlier in Ref. 14 for the coherence
length of a partially coherent beam in turbulence contains
an error.

The effect of a partially coherent source beam on the
wave-front coherence length rC is illustrated in Fig. 7,
where coherence length is shown as a function of atmo-
spheric turbulence strength. As the source beam be-
comes less coherent, the wave-front coherence length de-
creases as expected. For each value of source coherence,
the coherence length maintains an almost constant value
until turbulence strength increases to a point where at-
mospheric turbulence effects dominate wave-front coher-
ence. This condition is described by the hypothetical line

Fig. 7. Wave-front coherence length rC as a function of the
refractive-index structure parameter Cn

2 for a slightly divergent
beam ( r̂ 5 2) showing the effects of having a partially coherent
source beam: zS 5 1 (coherent source beam), 3, 10, and 1000.
The hypothetical line zS 5 0 is shown as an upper bound.
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determined by zS 5 0; in the limit zS 5 0 the global co-
herence parameter is completely determined by losses in
coherence due to atmospheric turbulence. In short, when
sg /ro ! 1, the effects of source coherence will dominate
the global coherence parameter z and the wave-front co-
herence length decreases when source coherence is in-
creased. Conversely, when sg /ro @ 1, any effects due to
having a partially coherent source beam are overtaken by
the loss in wave-front coherence induced by atmospheric
turbulence.

We can compare the results derived here for any type of
beam focusing and source coherence with those given in
Ref. 10 for a partially coherent collimated beam in free
space. Again using the notation of Ref. 10, define the 1/e
falloff in coherence as r̄m(z). The expression for wave-
front coherence given in Eq. (29) for a collimated beam
( r̂o 5 1, ẑ 5 2z/kwb

2) in the absence of turbulence (f
5 r̂/ ẑ) can be expressed as

1

r̄m
2 ~z !

5
1

2wb
2 ẑ2

2
f 2

2wz
2~z !

5
1

2wb
2 ẑ2

2
1

2wz
2~z !

.

(30)

Recalling that wz(z) 5 wb(z)D(z) and again using the re-
lationship wb

2 5 4sS
2 , we obtain

r̄m~z ! 5 A2dD~z !, (31)

which is identical to the result obtained in Ref. 10 for a
partially coherent collimated beam propagating in free
space.

Note that in any transverse cross section of a colli-
mated beam in free space the ratio of the beam size to the
coherence size is constant on propagation:

r̄S~z !

r̄m~z !
5

sS

d
5

AzS

2
; (32)

that is, the degree of global coherence of light in any
transverse cross section of a Gaussian Schell-model beam
is invariant on propagation. This key result was first
given in Ref. 10 for a partially coherent collimated beam
in free space:

r̄S~z !

r̄m~z !
5

sS

sg
. (33)

This invariance in the global coherence of light across any
transverse cross section of the beam also exists for a par-
tially coherent beam with specified focusing or diverging
characteristics propagating in atmospheric turbulence:

r̄S~z !

r̄m~z !
5

wz
2~z !

2ro
2 1

wz
2~z !

4wo
2 ẑ2

2
f 2

4
. (34)

5. CONCLUDING REMARKS
We have derived an expression for the cross-spectral den-
sity function of a partially coherent quasi-monochromatic
Gaussian laser beam that describes propagation in either
atmospheric turbulence or free space and that allows for
consideration of the focusing or diverging characteristics
of the beam. From the cross-spectral density function,
expressions for average intensity, beam size, phase front
radius of curvature, complex degree of coherence, and
wave-front coherence length were obtained. These ex-
pressions exactly reduce to their diffractive equivalents
when full coherence and the absence of turbulence are as-
sumed, and they exactly correspond to expressions ob-
tained previously for a partially coherent collimated beam
in the absence of turbulence.

The global coherence parameter, a measure of the glo-
bal degree of coherence of light across each transverse
plane along the propagation path, and the related source
coherence parameter that describes coherence properties
of the source beam at the transmitter were also defined.
Beam size, phase front radius of curvature, and wave-
front coherence were examined as a function of the source
coherence. When sg /ro ! 1 source coherence effects
dominate the behavior of wave-front coherence. As at-
mospheric turbulence becomes stronger so that sg /ro
@ 1, source coherence has little effect on wave-front co-
herence and atmospheric turbulence strength drives the
behavior of wave-front coherence. It is also shown that
the global coherence of light across any transverse cross
section of the beam is invariant for partially coherent
beams in atmospheric turbulence, regardless of focusing
or diverging characteristics.

A companion paper is being completed that augments
the results obtained here and demonstrates that the av-
erage bit error rate in a free-space laser communication
system is reduced when the transmitted laser beam is
partially coherent. Results obtained in this companion
paper also indicate that because of the quadratic approxi-
mation for the phase structure function28 the validity of
the expressions obtained here may be restricted to the
weak fluctuation regime.

APPENDIX A: RELATIONSHIP BETWEEN
THE MUTUAL COHERENCE FUNCTION
AND THE CROSS-SPECTRAL DENSITY
FUNCTION
The propagation geometry for the cross-spectral density
function is shown in Fig. 8. When comparing Fig. 8 with
Fig. 1, note that in Fig. 1 the z dependency in the vector r
is explicitly expressed (r1 and r2 have identical z compo-
nents). From Eq. (5.3-1) in Ref. 10, the integral repre-
sentation of the cross-spectral density function
W(r1 , r2 ; n) using the Green’s-function approach is

W~r1 , r2 ; n! 5 S k

2p
D 2EE d2r1 d2r2 W~r1 , r2 ; n!

3
exp@ jk~R2 2 R1!#

R2R1
, (A1)

Fig. 8. Propagation geometry for the cross-spectral density
function.
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where the obliquity factors cos u1 and cos u2 given in Eq.
(5.3-1) in Ref. 10 have been taken as unity. Next, take
the temporal Fourier transform of both sides and use the
fact that W(r1 , r2 ; n) and G(r1 , r2 ; t) form a Fourier
transform pair:

E
0

`

dn exp~22pjnt!W~r1 , r2 ; n!

5 G~r1 , r2 ; t! 5 E
0

`

dn exp~22pjnt!

3 H S k

2p
D 2EE d2r1 d2r2 W~r1 , r2 ; n!

3
exp@jk~R2 2 R1!#

R2R1
J . (A2)

Use the fact that k 5 2pn/c and exchange the order of in-
tegration to obtain

G~r1 , r2 ; t! 5
1

R2R1
EE d2r1 d2r2E

0

`

dnS n

c D
2

3 W~r1 , r2 ; n!exp~22pjnt!

3 expF2pjn~R2 2 R1!

c G . (A3)

If we assume that the cross-spectral density of the source
is ‘‘narrow band,’’ i.e., it is nonzero over a small enough
range of frequencies that we can make the approximation

n

c
>

k̄

2p
,

where n is frequency, c is the speed of light in a vacuum,
and k̄ is the central wave number of the frequency band,
then we can write

E
0

`

dn W~r1 , r2 ; n!exp~22pjnt!expF2pjn~R2 2 R1!

c G
5 GS r1 , r2 ; t 2

R2 2 R1

c D (A4)

by the properties of Fourier transforms. If we use the
properties of narrow-band analytic signals, we can fur-
ther write (see Sec. 4.4.3 in Ref. 10)

GS r1 , r2 ; t 2
R2 2 R1

c D
' G~r1 , r2 ; t!exp@ jk̄~R2 2 R1!#. (A5)

Using Eq. (A4) and substituting approximation (A5) into
integral (A3) yields the final result:

G~r1 , r2 ; t! 5 S k̄

2p
D 2E E d2r1 d2r2 G~r1 , r2 ; t!

3
exp@ jk̄~R2 2 R1!#

R2R1
. (A6)
Thus the mutual coherence function and the cross-
spectral density yield identical results as long as

R2 2 R1

c
!

1

Dn
(A7)

or, equivalently,

ur2 2 r1u

c
!

1

Dn
. (A8)
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