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ABSTRACT 

An automated video enhancement technique capable of image fusion from a stream of randomly-distorted images of a 
still scene is presented in this paper. The technique is based on the “lucky-region” fusion (LRF) approach and aims to 
improve locally the image quality according to the following steps: (1) for each image of the video stream an image 
quality map (IQM) which characterizes locally the image quality is computed, (2) each IQM is compared to that of the 
current fused image leading to the selection of best quality regions (the “lucky-regions”), and (3) the selected regions are 
merged into the fused video stream. While the LRF approach succeeds in producing images with significantly improved 
image quality compared to the source images, its performance depends on the imaging conditions and requires 
adjustment of its fusion parameter – the fusion kernel size – in order to adapt to an evolving environment (e.g. a 
turbulent atmosphere). Parameter selection was so far performed manually using a trial-and-error approach which causes 
the technique to be impractical for a real world implementation. The automated LRF technique presented is relaxed from 
this requirement and selects automatically the fusion parameter based on the analysis of the source images making it 
more suitable for practical systems. The improved LRF technique is applied to imaging through atmospheric turbulence 
for various imaging conditions and scenes of interest. In each case automatically-fused video streams demonstrate 
increases in image quality comparable to that obtained with manual selection of the fusion parameter.   
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1. INTRODUCTION 
Image fusion from multiple frames generally refers to the integration of multisensor data of various spectral, spatial and 
temporal resolutions and typically aims to sharpen images, enhance specific features, improve classification, or increase 
registration accuracy 1-15. While most fusion techniques are developed assuming that variations within the set of source 
frames are predominantly sensor-originated (e.g. sensors with different spatial and spectral resolutions as it is commonly 
the case in satellite imaging 1,2,5), less research efforts are directed toward the fusion of data produced by single image 
sensors (typically with fixed spectral and spatial resolutions) and where collected images are distinct from each other as 
a result of random fluctuations of the imaging medium. Common examples of random media are the Earth atmosphere or 
a turbulent volume of water which cause image sensors to yield time-varying spatially-distorted image data. 

A number of image processing techniques that aim to compensate for imaging medium-induced distortions can be found 
in literature 16-21. These techniques were typically developed for astronomical applications and assume the distortions 
introduced by the random medium are independent of position in the image plane (isoplanatic condition). This 
assumption causes them to fail for a field-of-view (FOV) broader than the isoplanatic angle approximately 22 
(anisoplanatic conditions). Under such conditions, few software-based techniques successfully mitigate image 
distortions. Among them, image restoration techniques based on local shift removal 16,17 are notable but have the 
downfall to be computationally expensive. Another approach referred to as “lucky-frame” selection 18,19 consists in 
selecting the best quality frames in a stream of randomly distorted images using an image quality metric. The problem 
with this approach is the low probability of appearance of a good quality image under anisoplanatic conditions. 
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An approach referred to as “lucky-region” fusion 11-15 consists in selecting and fusing image regions with best image 
quality (the “lucky-regions”) within a set of source images. Lucky-regions are selected using image quality maps (IQMs) 
which characterize locally the image quality 11,12. The LRF technique overcomes shortfalls of previously mentioned 
approaches and succeeds even under anisoplanatic conditions. However, a downside of the method is inherent to its need 
to manually select its key parameter – the fusion kernel size – in accordance with the fluctuations of the imaging 
medium. This limitation causes robustness issues and makes the technique impractical for implementation into a real 
system evolving in a changing environment.  

In this paper, we present a method for automated selection of the LRF parameter based on the analysis of the source 
images. The technique is illustrated with the fusion of atmospherically-distorted experimental data sets and demonstrates 
image quality improvements using the automated approach comparable to that obtained with manual selection of the 
parameter. 

This paper is organized as follow. The lucky-region fusion technique is first reviewed in Section 2 and the effect of 
fusion parameter is described. The strategy used to automate the LRF technique is presented in Section 3 and we explain 
how fusion is performed on video streams of distorted images in Section 4. In Section 5 the automated fusion technique 
is applied to atmospherically-distorted video streams and fusion results are presented. Section 6 provides concluding 
remarks. 

2. LUCKY-REGION FUSION TECHNIQUE 
2.1 Image quality map 

Image quality maps characterize locally the quality of images 11-12 and are used in the LRF technique in order to select 
lucky-regions within a set of distorted images. An IQM M(r), where vector r = {x,y} denotes the spatial coordinates, is 
defined as the convolution result between a spatially-varying image quality metric J(r) 23-25 and a Gaussian kernel 
G(r,a): 
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where G(r,a) = exp[-(x2 + y2)/a2] and a is a scalar referred to as the kernel size. The IQM quantifies the image quality 
within a local region of radius a centered on point r. A commonly used image quality metrics J(r) based on the image 
gradient 23-25 is given as  
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where∇ denotes the gradient vector operator and I(r,t) an image taken at time t. Note that in order to obtain an image 
quality metric independent of the overall image intensity Eq. (2) features the integral of the image intensity over the 
entire image as a normalization factor. 

2.2 Anisotropic evolution equation 
The lucky-region fusion process is based on the following form of the evolution equation 12:  
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where IF(r,t) denotes the fused image and Δ(r,t), referred to as the normalized anisotropic gain, is given by Δ(r,t) = δ 
(r,t)/ max(r,t)[δ(r,t)] with 
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M(r,t) and MF(r,t) denote the IQM’s corresponding to images I(r,t) and IF(r,t) respectively. The gain Δ(r,t) controls the 
weight associated with the image region being fused during the LRF process. Note in Eq. (4) that this weight is related to 
the local image quality improvement with respect to the current fused image. This ensures the fused image IF(r) 
incorporates regions with the best image quality within the set of source images. 
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2.3 Lucky-region fusion technique implementation 
Consider the fusion of a set of N randomly-distorted images of a stationary scene taken at sequential times tn denoted 
{In(r)}. The lucky-region fusion is performed iteratively according to the following rule 13-15: 
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where Δ(n)(r) corresponds to the anisotropic gain [see Eq. (4)] at iteration n. The fusion process is initialized using an 
arbitrary image IF

(0)(r). In practice, typical choices for IF
(0)(r) are the average image )(ˆ rI over the entire data set {In(r)}, 

the first frame of the set I0(r), or the frame within the image set with best overall image quality Jimg as defined by Jimg = 
∫J(r).dr. 

2.4 Tradeoff selective vs. inclusive fusion  
Fusion results obtained using Eq. (5) are characterized by their dependence on the fusion parameter a [see Eq. (1)] which 
controls the size of the lucky-regions being selected and fused. Choosing a large lucky-region size a causes the algorithm 
to incorporate more image information from the set of source images into the fused image, at the risk of including areas 
with low image quality (“inclusive” fusion) and resulting in poor image quality improvements. On the other end, 
selecting small lucky-regions provides a better optimization of the local image quality (“selective” fusion) but can result 
in the apparition of image artifacts. Such artifacts typically consist in edges in the fused image that do not correspond to 
object features in the scene of interest and that are not induced by the random media distortions (so called “artificial” 
edges). These are the consequence of selecting lucky-regions with excessively abrupt boundaries. In practice, attempts to 
use a fixed value for the kernel size usually fail when subject to fluctuations of the imaging medium (e.g. variations of 
the strength of atmospheric turbulence).  

The balance between selective and inclusive fusion had been so far established using a trial-and-error approach: the user 
adjusts the fusion kernel size parameter a until the fused image satisfies simultaneously the following two conditions: (1) 
image quality is optimized and (2) no artificial edge is present in the image. The kernel size value for which both 
conditions are respected is denoted aman.  

Figure 1 illustrates the effect of the kernel size on fusion results using an experimental data set of N = 100 randomly-
distorted images obtained through atmospheric imaging over a near-ground (less than 3 meters) 250 meters long path 
and for a field-of-view of 1.2×10-3 radian. Fig. 1(a) shows the average image )(ˆ rI over the entire image set {In(r)} for 
comparison with the fusion results displayed in Figs. 1(b) to 1(d) for a = aman, a = aman/4, and a = 4aman respectively. The 
image fused for a = aman in Fig. 1(b) shows a significant improvement in image quality compared to the average source 
image in Fig. 1(a). Note the artificial edges resulting of an excessively selective fusion (a < aman) [see arrows in Fig. 
1(c)]. For an overly inclusive fusion (a > aman) the fused image reveals a poor image quality as showed in Fig. 1(d) (see 
arrows). 

 
Fig. 1. Fusion results for an experimental set of atmospherically-distorted images using the lucky-region fusion technique 

with different kernel sizes. Fig. 1(a) shows the source image averaged over the data set and Figs.(b) to (d) display 
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fusion results for kernel sizes: a = aman, a = aman/4, and a = 4aman respectively. Note the image quality improvement 
between source image in Fig. 1(a) and fused image in Fig. 1(b) obtained for a = aman. Fig. 1(c) features fusion artifacts 
due to an excessively selective fusion (see artificial edges as pointed by arrows). Fused image in Fig. 1(d) is 
characterized by a poor local image quality as a result of an excessively inclusive fusion (see arrows). 

3. AUTOMATION OF THE LUCKY-REGION FUSION 
3.1 Approach 

As seen in Section 2, the LRF technique aims to fuse image regions that are characterized by a high spatial frequency 
content compared to other areas. For this reason the strategy used to select lucky-regions is based on the analysis of the 
edge content of the source images: for image sets with high frequency content lucky-regions should be picked in a 
selective manner (i.e. using a small kernel size a) and vice versa. 

The automation of the LRF technique described in this Section consists in (1) computing an edge metric Γ which 
characterizes the edge content of the image set {In(r)}, and (2) calculating the automated fusion kernel size aauto from 
metric Γ using an experimental model. The model is established in order to comply with the selective/inclusive fusion 
tradeoff described in Section 2.4. 

3.2 Edge metric Γ  
The computation of the edge metric Γ for the set of source images {In(r)} is performed according to the following steps:  

• Step 1: jitter compensation 

Random tip/tilt aberrations are the largest contributor to wavefront distortions 26,27 when imaging through atmospheric 
turbulence. While higher-order aberrations (i.e. defocus, astigmatism, etc.) benefit the LRF by introducing local 
distortions (mutations) and creating random appearance of high quality regions, tip/tilt aberrations only result in 
image jitter (i.e. translation). Jitter is compensated during this step for each image of the set with respect to the 
average image )(ˆ rI 28 and the resulting image set is denoted {In’(r)}. 

• Step 2: edge map computation 

The average image )('ˆ rI yielded by the jitter-compensated image set {In’(r)} is used to compute an edge map given 

as )('ˆ)( rr I∇=γ . 

• Step 3: computation of edge metric Γ 

Assuming the edge map γ(r) has a total number of pixels Npix, the edge metric Γ is defined as the threshold value for 
which ε.Npix image pixels of γ(r) have a value greater than or equal to Γ. The factor ε ∈ [0;1] is referred to as the 
saturation ratio and is introduced to improve the robustness of metric Γ with respect to edges that are not introduced 
by random media distortions and that do not correspond to edges in the scene of interest, such as the ones created by 
dysfunctional camera pixels or dust and scratches on the optics of the imaging system for example. Since the 
occurrence of such defects is relatively low, we typically set ε to a small value in the order of 10-2. Note that for ε = 0 
the metric Γ corresponds to the maximum value of the edge map γ(r) and therefore will be sensitive only to the 
sharpest edge within the image, however isolated this edge might be. 

In practice the edge metric is given by Γ = hγ[kε] where hγ is the histogram of edge map γ(r) and kε is determine so that  
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where M is the number of bins in histogram hγ.  

3.3 Model for the fusion kernel size 
In this subsection we substantiate our choice for the model relating the automated kernel size aauto to the edge metric Γ 
defined in Section 3.2. Consider the selection of lucky-regions within an image IG(r) consisting of a Gaussian intensity 
distribution of width σ>0 centered at position rc. The edge metric Γ for image IG(r) is derived in the Appendix for ε = 0 
and is given in Eq. (A4) by 
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Furthermore, it is reasonable to assume lucky-regions to be selected in IG(r) should correspond to the Gaussian 
distribution in the image and selection should be performed with kernel size a directly related to its width σ. Hence, the 
relation established in Eq. (7) leads us to choose the model between the automated kernel size aauto and the edge metric Γ 
as 

Γ
=

1Ka auto
, (8) 

where K is a calibration factor. Note the relation in Eq. (8) is a model chosen for calculating the fusion parameter aauto 
from image analysis (edge metric) and does not constitute an analytical expression for selecting the fusion kernel size. 
The calibration of the model is performed experimentally in the next subsection. 

3.4 Model calibration 
The model for the kernel size introduced in Eq. (8) is calibrated (i.e. factor K is determined) experimentally as follow. 
Consider Nset experimental data sets each corresponding to a distinct combination of scenes of interest and imaging 
conditions (random-distortion strength, imaging distance, light level, etc.). For each data set, the following two steps are 
performed: (1) the edge metric Γ is computed as shown in Section 3.2, and (2) the LRF technique presented in Section 2 
is used to produce multiple fused images from the data set corresponding to kernel sizes within interval [amin;amax] with 
increments of Δa. The interval is chosen so that amin corresponds to a sub-pixel size and amax to approximately the size of 
the image, and increment Δa is chosen in the order of a pixel size. For each set the kernel size aman is picked in 
accordance with criteria established in Section 2.4. Note that kernel size aman needs to be user-determined since 
conventional image quality metrics do not differentiate edges that are inherent to the scene of interest from edges 
resulting from an excessively small kernel size (artificial edges).  

The Nset resulting data points (Γ,aman) are then fit with the curve corresponding to Eq. (8) in order to minimize the root 
mean square (RMS) error as illustrated in Fig. 2. A total of Nset = 33 data points corresponding to as many distinct data 
sets are displayed in the figure for a saturation ration ε of 10-2 (see Section 3.2). Curve fitting yields a calibration factor 
K of 0.877 and a normalized root mean square error (NRMSE) of 0.191. The relation in Eq. (8) is hence complete and 
provides a practical way to determine parameter aauto from image analysis. 

 
Fig. 2. Plot showing experimental data points (Γ,aman) corresponding to the optimal kernel size for each data set (symbols 

“+”). The curve corresponds to relation in Eq. (8) and is fit to the data points in the sense of the root mean square error. 
Curve fitting provides a value for factor K. 

4. VIDEO FUSION FROM A STREAM OF IMAGES 
The automated LRF technique described in Sections 2 and 3 applies to the fusion of a single image IF(r) from a set 
{In(r)} containing a finite number of images taken at sequential times tn. However, in many applications image data are 
captured by a video camera that delivers a stream of images of “infinite” length making the automated LRF technique 
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introduced earlier impractical. The technique is extended to perform video fusion from a stream of images as follow. 
Let’s denote Im(r) a stream of source images taken at sequential times tm. An image subset of the video stream 
corresponding to the temporal window [tm-Nw+1, tm] is considered. The subset is denoted {Im(r)}Nw and contains Nw 
sequential images extracted from the “infinite” stream. Images in subset {Im(r)}Nw are fused into a single frame IF,m(r) 
using the LRF technique previously described. The temporal window is then moved forward and the fusion process is 
repeated sequentially on the next stream subset {Im+1(r)}Nw. Successive frames IF,m(r) constitute the fused video stream. 

5. APPLICATION TO ATMOSPERICALLY-DISTORTED IMAGE SETS AND VIDEO 
STREAMS 

The automated LRF technique is applied to multiple experimental data sets of atmospherically-distorted images 
collected under various imaging conditions (turbulence strength, imaging distance, etc.) and for different scenes of 
interest.  

A first series of image sets was collected in College Park, Maryland at a near-horizontal 4.2km atmospheric optical path 
from the Army Research Laboratory similar to the A_LOT facility 29 on May 1, 2009. The scene of interest consisted of 
a set of antennas and targets boards imaged with a field-of-view of 2.8×10-3 radian. The scene and the imaging system 
were located at a height of 70 meters (water tower top) and 20 meters above ground respectively. The imaging system 
consisted in a Celestron C11 telescope with aperture diameter of 280mm and focal length of 2800mm and a Sensor 
Unlimited camera SU640 collecting 640×512 pixels images at a frame rate of 60Hz and for an exposure time of 1.9ms.  

The second series of data sets was acquired at the Sandia National Laboratory in Albuquerque, New Mexico in January 
2008 over a near-ground propagation path of 1km. The scene of interest consisted in three 100cm×70cm target boards 
imaged using a RCOS Ritchey-Chretien telescope with aperture diameter of 315mm and focal distance 2850mm, and a 
Vision Research Phantom v9 camera producing 1632×1200 pixels images corresponding to a FOV of 2.0×10-3 radian. 
Frames were collected at a frame rate of 15Hz with an exposure time of 0.9ms. 

The third series of image sets used to illustrate automated LRF was collected at the Army Research Laboratory facility in 
Adelphi, Maryland on May 11, 2009 and the scene consisted of four human-sized mannequin heads and letter-sized 
target boards imaged at a distance of 250m with a near-ground (less than 3 meters above ground) propagation path. The 
imaging system was composed of a telescope Celestron C8 with aperture diameter of 210mm and focal length of 
2100mm and a Dalsa CA-D6 camera collecting 512×512 pixels images at a frame rate of 86Hz and exposure time of 
2.8ms. The full-FOV covered by the imaging system had an angular extend of 2.2×10-3 radian. 

For each series the number of images N being fused was established experimentally. The fusion of 100 to 150 frames 
resulted in significant image quality improvements. 

Figs. 3 to 5 show examples of collected data and fusion results corresponding respectively to the three experimental 
series described above. For each Figure, part (a) shows the average image over the N images of the set, and parts (b) and 
(c) show the fused image for automated and manual selection of the fusion kernel size respectively, aauto and aman. The 
LRF parameters used are given in Table 1 for each set. For each Figure the fused images in (b) and (c) show a significant 
improvement in image quality compared to the source image in (a). Also, note the comparable image quality between 
images fused using the automated and the manual kernel sizes aauto and aman. 

It should be noted that image sets used for illustration in this Section were not utilized during the LRF calibration step 
described in Section 3.4. This point is essential to demonstrate the technique’s independence with regards to source data.  

Table. 1. LRF parameters used during the fusion process for three data sets: number of source images being fused N, manual 
and automated kernel sizes aman and aauto. 

Data set #1 #2 #3 
Number of images fused, N 100 100 150 

aauto 6.4 pix. 5.7 pix. 6.3 pix. Fusion kernel size aman 5.0 pix. 3.5 pix. 7.0 pix. 
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Fig. 3. Imaging results obtained for the first experimental imaging setup: set of antennas and target boards imaged through 

atmospheric turbulence over a distance of 4.2km. Fig. 3(a) shows the average image over the source data set. Fig. 3(b) 
and (c) show fusion results for automatically and manually selected kernel sizes respectively: aauto = 6.4 pixels and aman 
= 5.0 pixels. Note the comparable image quality of fused images in (b) and (c). 
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Fig. 4. Imaging results obtained for the second experimental 

imaging setup: target boards imaged for a near-ground 
atmospheric propagation path over a distance of 1km. Fig. 
4(a) shows the average image over the source data set. Fig. 
4(b) and (c) show fusion results for automatically and 
manually selected kernel sizes respectively: aauto = 5.7 pixels 
and aman = 3.5 pixels. Note the comparable image quality of 
fused images in (b) and (c). 

 
Fig. 5. Imaging results obtained for the third 

experimental imaging setup: mannequin head and 
target boards imaged through near-ground 
atmospheric turbulence over a distance of 250m. 
Fig. 5(a) shows the average image over the source 
data set. Fig. 5(b) and (c) show fusion results for 
automatically and manually selected kernel sizes 
respectively: aauto = 6.3 pixels and aman = 7.0 pixels. 
Note the comparable image quality of fused images 
in (b) and (c). 
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6. CONCLUSION 
An improvement to the lucky-region fusion technique was presented. The upgrade consists in automating the LRF 
technique’s most critical fusion parameter: the fusion kernel size. The automation is based on the analysis of the source 
data and uses an edge metric as well as an experimental model in order to derive the fusion kernel size. The improved 
LRF technique has the advantage to require no user intervention and allows for LRF implementation into a system 
operating into a changing environment. In addition, since the automation is based solely on source image analysis there 
is no need to characterize turbulence strength for example using a scintillometer. Experimental validation of the 
automated LRF technique is provided with multiple examples and demonstrates fusion results with image quality 
comparable to that obtained with user selecting manually the kernel size. 

APPENDIX 
Consider image IG(r) consisting of a Gaussian intensity distribution of widths σ>0 centered at positions rc: IG(r) = exp[-
|r-rc|2/(2σ2)], where rc = {xc,yc}. The first derivative of IG(r) with respect to variable x is given by 
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From Section 3.2, the edge metric Γ for N = 1 is given for α = 0 as
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