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ABSTRACT 

A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in 
coherent fiber-array-based laser beam projection systems is introduced and analyzed.  This approach is based on 
integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture.  In the coherent fiber array 
considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (on-
subaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber 
at the collimating lens focal plane.  In the technique proposed, this tip and tilt phase aberration control is based on 
maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient 
descent (SPGD) technique.  The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated 
correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target.  Similar to a 
conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved 
using the coordinates obtained.  The piston phases that are required for coherent combining (phase locking) of the 
outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase.  Results of analysis 
and numerical simulations are presented.  Performance of adaptive precompensation of phase aberrations in this laser 
beam projection system type is compared for various system configurations characterized by the number of fiber 
collimators and atmospheric turbulence conditions.  The wavefront control concept presented can be effectively applied 
for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam 
propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence 
change – scenarios when conventional target-in-the-loop phase-locking techniques fail. 

Keywords: active or adaptive optics, atmospheric optics, wavefront sensing, phase retrieval, laser arrays, laser beam 
combining, phase locking 
 

1. INTRODUCTION 
In the previous studies1,2 we analyzed the potential efficiency of a laser beam projection system composed of an adaptive 
array of fiber collimators (subapertures).  This analysis was based on the assumption that there exists an adaptive optics 
(AO) system that can provide an ideal measurement and a precompensation of local (on-subaperture) phase aberrations 
originated both in the fiber-based laser beam delivery system, referred to as a multichannel master oscillator power 
amplifier (MOPA) system, and along the propagation path from the fiber-array transmitter aperture to the target.  Note 
that these two phase aberration types can be compensated using separate control systems.3  

In the present paper, we address the issues related to practical implementation of phase aberration precompensation 
techniques in the fiber-array beam projection systems.  Note that in the conventional AO technique, control signals 
applied to wavefront correctors (typically deformable mirrors) are computed based on the wavefront sensor data.  This 
approach requires sharing of the same optical propagation path for the outgoing and the received waves, with the 
received wave being redirected to a wavefront sensor by a beam splitter that is located in front of the outgoing beam.  In 
the case of the fiber-array-based beam director, this conventional AO approach would lead to an integration of wavefront 
sensing and control capabilities into each subaperture of the fiber array.  Such integration represents a challenging 
technical problem, especially for densely-packed fiber-array systems with a large number of subapertures. 
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Figure 1.  A schematic diagram illustrating wavefront sensing and adaptive control approach for a coherent array 
of fiber collimators. 

In the present study, we show that the wavefront phase aberration sensing in the fiber-array systems can be performed 
without installation of any additional optical elements that are located inside the optical train of the transmitted laser 
beams (beamlets) that exit fiber tips of the fiber collimators.  To illustrate the idea of the wavefront sensing and adaptive 
control concept introduced, consider a notional schematic of the fiber-array system shown in Fig. 1 and assume that each 
fiber collimator of the array is capable of the precompensation of local wavefront phase tip and tilt aberrations using 
controllable rapid displacement of the fiber tip located in the focal plane of the collimating lens.  In order to avoid 
speckle effects,4 restrict our analysis to a laser beam projection onto a remote unresolved (point-source) target.  Assume 
that by controlling the fiber-tip positions, the outgoing beamlets are focused (projected) on the target.  The optical wave 
scattered off the point-source target propagates back to the fiber-array subapertures.  Optical inhomogeneities of the 
propagation medium (atmospheric turbulence) result in phase aberrations as well as in intensity scintillations of the 
returned optical wave that enters the fiber-array subapertures.  The received wavefront is sub-divided by the lens array of 
the fiber collimators.  Similar to a conventional Shack-Hartmann wavefront sensor,5–9 each lens of the fiber collimator 
array focuses the received optical field onto its focal plane that coincides with the plane of the fiber tip.  A portion of the 
received optical field energy inside each focal spot enters into the core of the single-mode delivery fiber and propagates 
back to the fiber-coupled photodetector.  Separation of the counter-propagating outgoing and received waves in the fiber 
can be achieved using, for example, directional fiber circulators, free-space fiber isolators, etc.  The amount of the 
received optical power Jj, j = 1, …, Nsub, that enters to the jth photodetector at the jth fiber collimator is inversely 
proportional to the displacement of the fiber-tip center in respect to a focal-spot centroid position.  Here Nsub is the 
number of the fiber collimators in the array.  The mismatch between the coordinates of the delivery fiber and the focal-
spot centroid is due to the impact of atmospheric-turbulence-induced wavefront tip and tilt aberrations.  The received 
optical wave power at the fiber-collimator array subaperture can therefore be used as a measure (metric) of 
uncompensated wavefront tip and tilt aberrations.  The signals measured by the photodetector at each fiber-array 
subaperture are referred to as local power-in-the-bucket (PIB) metrics.  An optimization of the local PIB metrics using, 
e.g., the stochastic parallel gradient descent (SPGD)10–12 or the multi-dithering technique13 results in the wavefront tip 
and tilt aberration precompensation at each subaperture by placing the center of each fiber tip into the location of the 
corresponding focal-spot centroid.  With compensation of the local wavefront tip and tilt aberrations, the centroids of the 
focal spots can be easily determined from the pre-calibrated dependence of the fiber-tip x and y coordinates on the 
corresponding control voltages applied to x and y actuators of the fiber-tip positioning system.  This allows a retrieval of 
the atmospheric-turbulence-induced wavefront tip and tilt aberrations at each fiber-array subaperture.  Thus, the 
optimization of the local PIB metrics provides exactly the same information as the conventional Shack-Hartmann sensor 
with an identical array of lenslets.  This information is further used for the recovery of local piston-type phase aberration 
components, which is required for the precompensation of the turbulence-induced local piston aberrations leading to a 
coherent combining (phase locking) of the outgoing beamlets at the target plane. 

The procedure of the piston phase aberration retrieval used in the present work can be briefly described as follows.  The 
local piston phases are calculated from the wavefront phase that is reconstructed from the tip and tilt aberration data 
obtained with the fiber-array-based Shack-Hartman (FASH) wavefront sensor described.  Among several available 
techniques for the phase reconstruction based on the Shack-Hartmann sensor, we adopt the so-called modal phase 
reconstruction algorithm detailed in Ref. [14]. 
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The key advantage of the FASH wavefront sensing approach is that it does not require the wavefront sensing installation 
of a beam splitter located inside the optical train of the outgoing beamlets.  Another important advantage of the 
wavefront sensing and control concept presented here is that it can be applied for long-range laser beam projection 
scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is 
compared or even exceeds the characteristic time of the atmospheric turbulence change – scenarios when conventional 
target-in-the-loop (TIL) AO techniques fail.15,16 

2. PHASED ARRAY OF FIBER COLLIMATORS 
2.1 System Architecture and Mathematical Model 

Consider a sparse-aperture transceiver telescope of overall diameter D in the form of a hexagonal array of Nsub densely-
packed circular subapertures of diameter d, as in Fig. 1.  For simplicity, we assume that the transmitted beamlets are 
phase-locked at the system output (pupil) plane z = 0, i.e., all MOPA-system-induced random phase shifts are 
compensated using, e.g., the recently developed obscuration-free pupil-plane phase-locking technique.3 

In the receiver/sensor mode, the received (backscattered) wave with the complex amplitude ( , ) =inA tr  
1 2 ( , ) exp[ ( , )]ϕ−inI t i tr r  after propagation through the atmospheric turbulence enters a pupil plane.  Here ( , )inI tr  is the 

input wave intensity, ( , )ϕ tr  is the distorted wavefront phase, r = {x, y} is the radius vector at the pupil plane, and t is 
the time variable.  The complex amplitude of the input optical field at the jth subaperture is therefore given by 
 ( ) ( ) ( ), , exp ,in

j j j j j jA t A t i tϕ⎡ ⎤= −⎣ ⎦ρ ρ ρ   (j = 1, …, Nsub), (1) 

where ρj ≡ r – rj is the radius vector with respect to the jth subaperture center rj, 1 2( , ) ( ) ( , )=j j j inA t M I tρ ρ r  is a positive 

real function, ( , ) ( ) ( , )ϕ ϕ=j j jt M tρ ρ r , and M(ρj) is the step-wise window function that equals unity inside the 
subaperture circular region Ωj and zero otherwise.  The distorted wavefront phase in Eq. (1) is represented in the form 
 ( ) ( ) ( ), ,ϕ ϕ= + Δat at

j j j j jt t tρ ρ , (2) 

where ( )Δat
j t  and ( , )ϕat

j j tρ  are the local atmospheric-turbulence-induced pistons and spatially-modulated phase 
aberrations of the received wave originated from the remote point-source target.  Here we assume that the subaperture-
averaged phase modulation components { ( )ϕ at

j t } of functions { ( , )ϕat
j j tρ } equal zero. 

In the transmitter mode, the complex amplitude of the outgoing optical field at the jth subaperture ( , )out
j jA tρ  at the 

output plane z = 0 can be represented in the following form: 
 ( ) ( ) ( )0, exp ,φ⎡ ⎤= ⎣ ⎦

out out
j j j j jA t A i tρ ρ ρ , (3) 

where 1 2
0 0( ) ( ) ( )=j j jA M Iρ ρ ρ  and 0 ( )jI ρ  and ( , )φout

j j tρ  are respectively the intensity and the phase of the jth 

beamlet.  We assume that the amplitude 0 ( )jI ρ  is described by the Gaussian function of radius a0 for all subapertures, 

i.e., 2 2
0 0 0( ) (0)exp( 2 )ρ= −j jI I aρ , where I0(0) is a constant. 

The phase term in Eq. (3) is represented in the form2 
 ( ) ( ) ( ) ( ), ,φ = + +out F

j j j j j j jt u v t u tρ ρ ρ , (4) 

where { ( )F
j ju ρ } are the programmable phases used for the fiber-array beam focusing (projection) onto the target 

located at the plane z = L, {vj(t)} are the controllable phase shifts used for compensation of the atmospheric-turbulence-
induced piston-type phase aberrations { ( )Δat

j t } (target-plane phase locking), and { ( , )j ju tρ } are the local wavefront 
phase modulations introduced, e.g., by the x and y fiber-tip actuators incorporated into the fiber collimators.12  We 
assume that the piston-type phase components { ( )ju t } of the phase modulations { ( , )j ju tρ }, defined as the integrals of 

functions { ( , )j ju tρ } over the corresponding subaperture areas, equal zero for all indexes j. 
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2.2 Performance Metrics: Local Wavefront Tilt Measurements 

As described in the introduction, the local PIB metrics {Jj}, j = 1, …, Nsub, are measured by means of the fiber-coupled 
photodetectors (see Fig. 1).  The amount of the received power Jj is inversely proportional to the displacement of the jth 
fiber-tip center in respect to local displacements c

jx  and c
jy  of a focal-spot centroid from its reference position (the local 

center coordinates).  The displacements c
jx  and c

jy  are directly proportional to local tilts or angular orientation 

components α x
j  and α y

j .  Assuming ( )F
j jI κ  is the input intensity distribution at the plane of the jth fiber tip (focal 

plane), { , }κ κ= = −x y
j j j jκ q q , q = {qx, qy} is the spatial-frequency radius vector in the focal plane, and qj is the center 

of the focal plane coinciding with the local center coordinates rj, the focal-spot centroid coordinates are given by17 

 
( )
( )

, d d

, d d

κ κ κ κ κ
α

κ κ κ κ
≡ =∫
∫

x F x y x y
j j j j j jc x

j jF x y x y
j j j j j

I
x F

I
,  

( )
( )

, d d

, d d

κ κ κ κ κ
α

κ κ κ κ
≡ =∫
∫

y F x y x y
j j j j j jc y

j jF x y x y
j j j j j

I
y F

I
, (5) 

where F is the focal distance of the fiber-collimator lens.  For simplicity of notations, we omit the time dependence of 
the corresponding dynamic variables from the equations.  The local tilts in Eq. (5) are defined through the x and y 
subaperture-averaged local phase gradients (slopes) α=x x

j js k  and α=y y
j js k  given by 

 ( )1 , d dϕ
Ω

∂
=

∂∫
j

x
j

sub
s x y x y

S x
, ( )1 , d dϕ

Ω

∂
=

∂∫
j

y
j

sub
s x y x y

S y
  (j = 1, …, Nsub), (6) 

where 2 4π=subS d  is the subaperture area, k = 2π/λ is the optical wavenumber, and λ is the wavelength. 

In practice, the focal-spot centroid displacements { c
jx } and { c

jy } are measured through SPGD maximization of the 

local PIB metrics {Jj}, which are given as the total projected power of the intensity distributions { ( )F
j jI κ } inside the 

corresponding fiber-core areas.  The metric maximization is performed using controllable rapid displacement of the tip 
of the delivery fiber.  The subsequently calculated from Eq. (5) local tilts {α x

j } and {α y
j } or, alternatively, local slopes 

{ x
js } and { y

js } are then used to compute the instructions for the following AO control. 

2.3 Phase Locking and Higher Order Phase Aberration Compensation 

The slopes retrieved do not contain explicit information about the local atmospheric-turbulence-induced pistons.  In 
order to perform the target-plane phase locking of the outgoing array of beamlets, we need to find an algorithm that 
would permit calculation of local piston-type phase aberrations from the slopes.  One of the simplest (though not 
necessarily optimal) solutions to the problem is the following.  First, based on the slope measurements, we perform a 
reconstruction of the wavefront phase over the entire densely-packed aperture of diameter D, and then from a 
reconstructed wavefront we calculate the piston-type aberrations; the corresponding procedures are detailed in Sections 3 
and 4 and further verified in Section 5. 

Higher order local aberrations such as local tilts, defoci, and beyond can, in principle, be computed and mitigated from 
the reconstructed wavefront as well.  To compensate either low-order, or high-order, or both orders of local aberrations, 
one can use either/both the x-y-z fiber-tip actuators12 for tilts and defocus or/and the multi-pixel LC phase SLM or AO 
controllable deformable mirrors for higher order aberration compensations.  In the present paper, we limit our analysis to 
compensation of the local tips and tilts only.  These tilts are measured through the local PIB metrics {Jj}, j = 1, …, Nsub, 
as described in Section 2.2. 

3. MODAL WAVEFRONT RECONSTRUCTION: MATHEMATICAL MODEL 
Since the early works,18–20 wavefront reconstruction from its gradients is one of the largely studied tasks in adaptive 
optics (AO), mostly due to a wide use of the Shack-Hartmann-type sensors.8,9  Traditionally, two approaches by which 
the wavefront may be represented are identified: modal and zonal estimations (see Ref. [21] and references therein).  
Zonal algorithms build a discrete phase field in the vicinity of the measured points; the phase data in between the 
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measured points are interpolated.  Modal algorithms approximate the wavefront phase by a series of a number of 
aperture response functions (modes). 

In adaptive optics, modal algorithms are prevalent, with different choices of basis response functions and algorithms.  
One of the most widespread techniques is the least squares estimation algorithm.14,22  Although there are further 
advances in reconstruction procedures that provide more accurate results,23–32 in the present work we consider only the 
least squares estimation because it can be applied to the phase reconstruction without a priori knowledge of the phase 
statistics and also because it has no apparent restriction on the form, geometry, or the number of subapertures.22 

3.1 Least Squares Estimation Algorithm 

We use detailed in Ref. [14] modal wavefront reconstruction procedure based on the least squares minimization 
algorithm.  This procedure is described as follows. 

At the pupil plane of the sparse aperture of diameter D, defined here by a circle of the smallest diameter that contains all 
the subapertures within it (the circumscribed circle), the input wavefront φ(r) can be decomposed into a set of orthogonal 
response functions.  As basis response functions, different polynomials such as Zernike polynomials33,34 and atmospheric 
Karhunen-Loeve functions are used.14,35  In the present work we use the orthonormal annular Zernike polynomials 
{Zl(r)}.36,37  The polynomial expansion of the arbitrary function φ(r) over a circle of diameter D is therefore given by34 

 ( ) ( )
0

ϕ
∞

=

=∑ l l
l

a Zr r , (7) 

where the index l orders the polynomials and {al} are the phase aberration coefficients, 

 ( ) ( )1 dϕ
Ω

= ∫l l
M

a Z
S

r r r , (8) 

d d dr r θ=r , Ω is the circular monolithic aperture of diameter D, and 2 4MS Dπ= .  Note that for simplicity of 
notations we write {Zl(r)} instead of {Zl(2r/D)} defined on the unit circle. 

The wavefront is sensed by an array of Nsub subapertures through measurements of the subaperture-averaged x and y tilts 
α =x x

j js k  and α =y y
j js k , where x

js  and y
js  are the subaperture-averaged wavefront slopes given by Eqs. (6).  

Substituting Eq. (7) into Eqs. (6), we obtain the following expressions for the slopes: 

 ( ) ,
1 1

1 , d d
∞ ∞

= =Ω

∂
= =

∂∑ ∑∫
j

x xl
j l l j l

sub l l

Z
s a x y x y a G

S x
,  ( ) ,

1 1

1 , d d
∞ ∞

= =Ω

∂
= =

∂∑ ∑∫
j

yy l
j l l j l

sub l l

Z
s a x y x y a G

S y
,  (j = 1, …, Nsub), (9) 

where ( )1
, , d d−

Ω
≡ ∂ ∂⎡ ⎤⎣ ⎦∫

j

x
j l sub lG S Z x y x x y  and ( )1

, , d d−

Ω
≡ ∂ ∂⎡ ⎤⎣ ⎦∫

j

y
sub lj lG S Z x y y x y .  Here we took into account that the 

derivatives of the zero mode Z0, piston, equal zero.  In the matrix form, Eqs. (9) can be rewritten as 
 =s Ga , (10) 
where s = { 1

xs , 1
ys , …, x

js , y
js , …, 

sub

x
Ns , 

sub

y
Ns } is the slope column vector, a = {a1, …, al, …} is an infinite column 

vector of exact aberration coefficients, and G is a 2Nsub-by-infinity matrix containing the subaperture-averaged gradients 
of Zernike functions, 

 

1,1 1,

1,1 1,

,1 ,

,1 ,

,1 ,

,1 ,

sub sub

sub sub

x x
l

y y
l

x x
j j l

y y
j j l

x x
N N l

y y
N N l

G G

G G

G G

G G

G G

G G

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

G

L L

L L

M O M O

L L

L L

M O M O

L L

L L

. (11) 
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Assuming that we know the slope vector s from the measurements of the subaperture-averaged x and y coordinates of 
focal spots (see Section 2.2) and the subaperture-averaged response function derivatives { ,

x
j lG } and { ,

y
j lG }, calculated 

either analytically or numerically, we would like now to estimate the aberration coefficients a. 

Equations (10) cannot be solved with an infinite number of modes since it is an underdetermined system for 2 subN N> ; 
instead, one should replace infinity with 2 subN N≤  and seek to obtain the first N coefficients of the aberration 
coefficient column vector a.  However, due to the fact that the measured values of local slopes contain gradient 
components from the remaining (> N) high-order response functions (not taking into account other noise sources), those 
coefficients cannot be found exactly (see Section 3.2).  Instead, one should seek for approximated solutions.  In this case, 
the wavefront phase in search is approximated as 

 ( ) ( )
1

φ
=

=∑
N

l l
l

b Zr r , (12) 

where {bl} are the estimated phase aberration coefficients.  Repeating the procedure, one obtain 
 = %s Gb , (13) 
where b = {b1, …, bl, …, bN} and %G  is a 2Nsub-by-N matrix coinciding with the first N columns of the matrix G. 

Let us suppose 2 subN N= , that is, we have N-by-N matrix equation (13) which can be solved by taking the matrix 
inverse to obtain 
 1−=b G s% , (14) 
where 1−G%  is the inverse of the N-by-N square matrix G% .  Note that solution (14) exists only if matrix G%  is invertible, 
that is, the columns of G%  are linearly independent (non-singular or non-degenerate matrix). 

Suppose now we have 2 subN N< , that is, the system is overdetermined.  In this case the system of linear equations (13) 

lacks a unique solution.  Let − =Gb s res% , where res is a residual column vector, and use calculus to minimize the 
length of res, −Gb s% .  The standard least squares solution of Eq. (13) is38 

 +=b G s% , (15) 
where 1( )+ −=% % % %T TG G G G  is the pseudoinverse or the generalized inverse of the matrix G% , TG%  is the transpose of 

matrix G%  and 1( )−% %TG G  is the inverse of the N-by-N matrix TG G% % .  We note that if both columns and rows of the 

matrix G%  are linearly independent (that is, for square regular matrices), the pseudoinverse +G%  is just the inverse 1−G% , 
and the solutions (14) and (15) coincide.  This means that solution (15) is applicable to the case 2 subN N=  as well. 

3.2 Cross Coupling and Aliasing of Wavefront Estimation 

As explicitly shown in Ref. [14], the lower-order (< N) estimated coefficients {bl} are influenced by the higher order 
(> N) coefficients {al}.  This is the so-called problem of cross coupling of aberrations (lack of orthogonality of its 
column vectors) and aliasing of aberrations (lack of linear independence of its column vectors).39,40  The linear 
correlation (aliasing) between the columns in the gradient matrix originates from the symmetry of subaperture 
configurations.40  Note that the use of asymmetrical or randomized subaperture geometries can reduce the effect.41  The 
cross coupling, in its turn, is attributable to the nonorthogonality of the derivatives of the basis response functions.  In 
order to avoid this problem, one can in principle choose a set of polynomials whose derivatives are orthogonal over the 
locations of the measurements (subapertures).39  When using Zernike polynomials as basis response functions, the mode 
cross coupling already occurs when one tries to estimate modes higher than astigmatism, and in order to maintain the 
quality of the low-order mode estimates it is desirable to minimize the number of estimated (reconstructed) modes.39  
Regardless, a complete elimination of the remaining error does not seem feasible. 

3.3 Modal Wavefront Reconstruction Error 

Knowing estimated phase aberration coefficients {bl}, one can reconstruct the phase ( )φ r  using Eq. (12).  As a modal 
wavefront reconstruction efficiency characteristic, let us define the ensemble- or atmospheric-averaged mean square 
error, 
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 ( ) ( ) 22
WR

1 dσ ϕ φ
Ω

= −⎡ ⎤⎣ ⎦∫
MS

r r r . (16) 

Here we assume that the sparse-aperture-averaged values of both original and reconstructed wavefronts equal zero, i.e., 

( )d 0ϕ
Ω

=∫ r r  and ( )d 0φ
Ω

=∫ r r . 

4. PISTON AND TILT ABERRATION COMPENSATION 
4.1 Piston Phase Retrieval and Compensation 

Consider decomposition of phase aberrations {φj(ρj)} inside each subaperture using the set of Zernike response functions 
{Zl(ρj)} defined on the subaperture areas {Ωj}, j = 1, …, Nsub, that is, 

 ( ) ( ) ( ) ( ),
1 1 1

ϕ ϕ
∞

= = =

⎡ ⎤
= = Δ +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑

sub subN N
at

j j j j j l l j
j j l

M a Zr ρ ρ ρ , (17) 

where { at
jΔ } are the piston-type phase aberration components inside the system subapertures and {aj,l} are the phase 

aberration coefficients corresponding to the spatially-varying phase aberration components { ( )ϕat
j jρ }.2  From the 

original wavefront φ(r), the local piston-type aberrations are defined as 

 ( )1 dϕ
Ω

Δ = ∫
j

at
j

subS
r r   (j = 1, …, Nsub). (18) 

Note that since calculation of pistons { at
jΔ } require a priori knowledge of φ(r), they can be referred to as “true” pistons, 

and compensation of the atmospheric turbulence-induced piston-type phase aberrations { at
jΔ } is correspondingly 

referred to as “true” piston compensation. 

The estimated piston-type aberrations that can be retrieved from the reconstructed phase ( )φ r  are in the same way 
defined as 

 ( )est 1 dφ
Ω

Δ = ∫
j

j
subS

r r   (j = 1, …, Nsub). (19) 

Compensation of estimated phase shifts { estΔ j } by means of the controllable phase shifts {vj(t)} is referred to here as the 
piston aberration component compensation based on the measured subaperture-averaged wavefront slopes, or the partial 
piston compensation, to be short. 

4.2 Residual Piston Phase Errors 

After true piston compensation, the residual (uncompensated) phase defined on the subaperture areas is therefore written 
as 

 ( ) ( ) ( ) ( ) ( )true
true

1 1 1

δ ϕ δ ϕ
= = =

⎡ ⎤= − Δ = =⎣ ⎦∑ ∑ ∑
sub sub subN N N

at at
j j j j j j j j

j j j

Mr ρ ρ ρ ρ , (20a) 

and for the partial piston compensation it is correspondingly given by 

 ( ) ( ) ( ) ( )est est
est

1 1

δ ϕ δ
= =

⎡ ⎤= − Δ =⎣ ⎦∑ ∑
sub subN N

j j j j j j
j j

Mr ρ ρ ρ , (20b) 

where true ( )δ j jρ  and est ( )δ j jρ  are the corresponding residual phase aberrations at the jth subaperture. 

One way to characterize the efficiency of the wavefront reconstruction technique with subsequent pistons’ retrieval is to 
calculate the atmospheric-averaged values of the mean square residual phase errors, which are respectively defined as2 

 ( ) ( ) ( )2 22 true
PL true

1 1

1 1d dσ ϕ δ
Ω Ω

= =

⎡ ⎤ ⎡ ⎤= − Δ =⎣ ⎦ ⎣ ⎦∑ ∑∫ ∫
sub sub

j j

N N
at

j j j j j j j j
C Cj j

M
S S

ρ ρ ρ ρ ρ , (21a) 
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 ( ) ( ) ( )2 22 est est
PL est

1 1

1 1d dσ ϕ δ
Ω

= = Ω

⎡ ⎤ ⎡ ⎤= − Δ =⎣ ⎦ ⎣ ⎦∑ ∑∫ ∫
sub sub

j
j

N N

j j j j j j j j
C Cj j

M
S S

ρ ρ ρ ρ ρ . (21b) 

Note that the introduced errors [Eqs. (16) and (21)] are quantifiable only if we know the original wavefront explicitly.  If 
φ(r) is unknown, other criteria should be used to estimate the piston retrieval and compensation (phase locking) 
efficiency, such as, for example, the Strehl ratios (0) / (0)dif

F FSt I I=  (normalized on-axis intensity in the Fourier plane) 

and max max / (0)dif
F FSt I I=  (normalized maximum value of intensity in the Fourier plane). 

4.3 Local Tilt Compensation 

Suppose AO control at each circular subaperture of diameter d additionally includes compensation of local tilts, which 
are defined through the first and second Zernike polynomials 1( ) (4 )( )= −j jZ d x xρ  and 2 ( ) (4 )( )= −j jZ d y yρ .  
Assuming phase (17) consists of first or second Zernike polynomials only, from the tilt definitions and Eqs. (6) we 
obtain the following relationships for the “true” tilts: , true

,1(4 )α =x
j jd a k  and , true

,2(4 )α =y
j jd a k , where ,1ja  and 

,2ja  are the phase aberration coefficients.  Therefore, true phase aberrations {φj(ρj)} defined on the subaperture areas 
{Ωj} are given by 
 ( ) ( ) ( ) ( ), true , true , true, ,ϕ α α δ⎡ ⎤− − = Δ + − + − + − −⎣ ⎦

at x y nl
j j j j j j j j j j jx x y y k x x y y x x y y , (22a) 

where , true , true( , ) ( )δ δ− − =nl nl
j j j j jx x y y ρ  is the true nonlinear residual phase aberration at the jth subaperture.  

Analogously, for the estimated phase aberrations we write 
 ( ) ( ) ( ) ( )est , est , est , est, ,φ α α δ⎡ ⎤− − = Δ + − + − + − −⎣ ⎦

x y nl
j j j j j j j j j j jx x y y k x x y y x x y y , (22b) 

where , estα =x c
j jx F  and , estα =y c

j jy F  are the estimated wavefront phase tilts calculated from the beamlets’ centroid 

measurements (5) through the local PIB metric optimization and , est ( )δ nl
j jρ  is the estimated residual phase aberration at 

the jth subaperture.  Note that the estimated wavefront tilts are measured with contributions from high-order Zernike 
modes,42 so they differ from the true tilts.  In both cases, the atmospheric-averaged values of the mean square nonlinear 
residual phase errors 2

PL+TT true
σ  and 2

PL+TT est
σ  are defined analogously as in Eqs. (21). 

5. NUMERICAL RESULTS 
In the first part of our numerical simulations presented in Sections 5.1 and 5.2, the atmospheric turbulence was 
accounted for by using a single phase screen φ(r) of Kolmogorov statistics located at the fiber-array pupil plane (pupil-
plane phase screen).  In Section 5.3, in order to model the spatially distributed turbulence, we used 20 phase screens 
equidistantly distributed along the laser beam propagation path.  Atmospheric turbulence strength was accounted for by 
varying the Fried parameter r0.43  Generation of phase screens was performed on a numerical grid with N×N points 
(N = 1024) using spectral approach.44–47  The densely-packed aperture of diameter D was located in the grid central area 
of diameter (6/8)N pixels.  To obtain statistically averaged values of the examined metrics (e.g., mean square phase 
errors), the computations were repeated with a set of 100 independent phase screen realizations, and the obtained metric 
values were averaged. 

5.1 Modal Wavefront Reconstruction 

For the pupil-plane phase screen model, we know φ(r) explicitly, so the analysis is straightforward.  To measure 2Nsub 
subaperture-averaged phase gradients { x

js } and { y
js } inside each subaperture, we take derivatives to x and y on φ(r) and 

spatially average them within each subaperture.  The subaperture-averaged gradients of Zernike response functions 
{ ,

x
j lG } and { ,

y
j lG } are calculated accordingly.  Numerically, least squares solution of Eq. (13) for 2 subN N≤  is found 

by performing the singular-value decomposition of the matrix G%  and then applying the singular value backsubstitution 
procedure in order to find b; both routines, named svdcmp and svbksb, are given in Ref. [48].  After computing 
estimated phase aberration coefficients {bl}, the estimated phase ( )φ r  was reconstructed using Eq. (12). 
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The atmospheric-averaged mean square wavefront reconstruction (WR) error (16) was calculated for different system 
architectures and parameters; dependences of the normalized errors ( )2 2 2

WR WR WRˆ ( ) ( ) 0σ σ σ= =N N N , where 

( ) ( ) ( )2 2
WR 0 1 dσ ϕ

Ω
= = ∫MN S r r , on a number of reconstructed modes N are shown by solid lines in Fig. 2(a).  

For the sake of comparativeness, the same error was calculated with ( ) ( )
0

ϕ
=

=∑N
N l ll

a Zr r  instead of 

( ) ( )
0

φ
=

=∑N
l ll

b Zr r  [see Eq. (12)], where the phase aberration coefficients {al} were calculated directly from the 

original wavefront φ(r) [see Eq. (8)]; the corresponding dependence of this error, referred to as the true wavefront 
reconstruction error 2

WR true
σ̂ , is shown in Fig. 2(a) by the dashed line. 

 
Figure 2. (a) Dependences of the normalized ensemble-averaged mean square wavefront reconstruction error 

2
WRσ̂  on the number of reconstructed Zernike modes N for a different number of subapertures Nsub with fixed 

fiber-array aperture diameter D and D/r0 = 3.  (b) Dependences of the mean square error 2
WRσ  [rad2] on D/r0 for 

a different number of subapertures Nsub.  In (b), dotted lines are for N = 0 (no compensation) and solid lines are for 
WR
opt ( )= subN N N .  Inserts at the bottom marked by (I)–(IV) represent phase distributions: (I) is the original 

phase; (II)–(IV) are the reconstructed wavefronts for Nsub = 7 and N = 9 (II), Nsub = 19 and N = 16 (III), and 
Nsub = 37 and N = 21 (IV). 

As can be seen from the figure, an increase of the subaperture number (that is, the number of measured phase gradients 
over the same area) leads to a possibility to recover a larger number of Zernike polynomials with the smaller WR error.  
On the other hand, due to the contribution of aliasing and cross coupling aberration terms, for sufficiently large N the 
error increases abruptly, and the reconstruction technique fails.  For a specific system architecture configuration, the 
optimal wavefront reconstruction is said to be achieved for an optimal WR

opt=N N  that results in the smallest WR error.14  

From Fig. 2(a), WR
optN  is calculated for each configuration; the results are shown in Table 1. 

Dependences of 2
WRσ  on D/r0 for a different number of subapertures Nsub are shown in Fig. 2(b).  Interestingly, for the 

fixed Nsub, the “efficiency” ratio 2 2 WR 2
WR WR opt WRˆ ( ) ( 0)σ σ σ= = =N N N  is proven to be constant over the whole 
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tested interval of D/r0; this ratio is calculated in Table 2 for a set of Nsub considered.  Moreover, the dependence 
2
WRˆ ( )σ N  in Fig. 2(a) appears to be identical for all tested D/r0 range.  This is quite understandable since (at least for a 

pupil-plane phase-screen model) the change in D/r0 results in the linearly proportional change of the measured slopes, 
and correspondingly in the linearly proportional change of the reconstructed Zernike coefficients. 

Table 1. Optimal number of reconstruction modes for adaptive array of fiber collimators with a different number 
of subapertures Nsub. 

Nsub 
WR
optN  PL

optN  

7 9 8 
19 16 16 
37 21 30 

 
5.2 Phase Locking and Tilt Compensation 

Efficiency of the wavefront reconstruction technique with subsequent pistons’ retrieval in fiber-array beam director 
systems is evaluated through the mean square residual phase errors 2

PL true
σ  and 2

PL est
σ  [see Eqs. (21a) and (21b), 

where the estimated piston-type aberrations are given by Eq. (19)].  In Fig. 3(a), solid lines represent 
2 2 2
PL PL PLest est est

ˆ ˆ( ) ( 0)σ σ σ= =N N  for phase locking through the least squares minimization, and dashed lines  

 

 

Figure 3.  (a) Dependences of the normalized ensemble-averaged mean square residual error 2
PL est

σ̂  (solid lines) 

on the number of reconstructed Zernike modes N for a different number of subapertures Nsub with fixed fiber-array 

aperture diameter D and D/r0 = 3.  Horizontal dashed lines indicate 2
PL true

σ̂  for a different number of 

subapertures (from top to bottom): Nsub = 7, 19, and 37.  (b) Dependences of the mean square errors 
2 2
PL PLest true

ˆ ˆ( 0) ( 0)σ σ= ==N N  (dotted lines), 2 PL
PL opt est

ˆ ( )σ =N N  (solid lines), and 2
PL true

σ̂  (dashed 

lines) on D/r0 for a different number of subapertures Nsub.  Inserts at the bottom marked by (I)–(IV) represent 
phase distributions: (I) is the original phase and (II)–(IV) are the retrieved pistons for Nsub = 7 and N = 8 (II), 
Nsub = 19 and N = 16 (III), and Nsub = 37 and N = 30 (IV). 
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show 2
PL true

σ̂ , which are not dependent on the number of the reconstructed modes N but are different for a different 

number of fiber collimators Nsub [see Eq. (21a)].  Again, for sufficiently large N, the error 2
PL est

σ̂  sharply increases and 

the reconstruction technique fails.  Note that the optimal number of the reconstructed modes PL
optN  that results in the 

smallest phase-locking (PL) error do not coincide with WR
optN  (see Table 1). 

Dependences of 2
PL true

σ  and 2
PL est

σ  on D/r0 are shown in Fig. 3(b) by dashed and solid lines, respectively.  

Analogously to 2
WRˆ ( )σ N , the efficiency ratios 2

PL true
σ̂  and 2

PL est
σ̂  are constant in the examined range of D/r0 (see 

Table 2).  The results presented indicate a significant PL error reduction and the corresponding gain in the laser beam 
power projection with the increase of a number of the phase-locked subapertures Nsub in the coherent fiber-array-based 
systems. 

 

Figure 4.  (a) Dependences of the normalized ensemble-averaged mean square residual error 2
PL+TT est

σ̂  for 

phase locking plus local tip and tilt compensation (“PL + TT”, solid lines) on the number of reconstructed Zernike 
modes N for a different number of subapertures Nsub with fixed fiber-array aperture diameter D and D/r0 = 3.  

Horizontal dashed lines indicate 2
PL+TT true

σ̂  for phase locking plus local tip and tilt compensation and for a 

different number of subapertures (from top to bottom): Nsub = 7, 19, and 37.  For comparison, curves 2
PL est

σ̂  

from Fig. 3(a) are shown in (a) as well (“PL”, dot-dashed lines).  (b) Corresponding dependences of the mean 

square errors 2 2
PL+TT PLtrue/est true/est

( 0) ( 0)σ σ= ==N N  (dotted lines), 2 PL
PL+TT opt est

( )σ =N N  (solid lines), 

and 2
PL+TT true

σ  (dashed lines) on D/r0 for a different number of subapertures Nsub.  Inserts marked by (I)–(IV) 

represent phase distributions: (I) is the original phase and (II)–(IV) are the reconstructed pistons plus local tilts for 
Nsub = 7 and N = 8 (II), Nsub = 19 and N = 16 (III), and Nsub = 37 and N = 30 (IV). 

Consider now a fiber-array beam director with precompensation of tip and tilt components of phase distortion at each 
subaperture.  The atmospheric-averaged dependences of the mean square nonlinear residual phase errors 2

PL+TT true
σ  
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and 2
PL+TT est

σ  on the number of reconstructed Zernike modes N and on D/r0 ratio for a different number of 

subapertures Nsub are shown in Figs. 4(a) and 4(b), respectively; the corresponding efficiency ratios are given in Table 2.  
As seen from comparison of Figs. 3 and 4, incorporation of tip and tilt aberration compensation results in a substantial 
decrease of the residual phase metrics (the system efficiency increase) for all the system configurations considered. 

Table 2. Normalized residual phase errors for adaptive control in phased array of fiber collimators. 

Nsub 
Wavefront 

reconstruction, 2
WRσ̂  

Phase locking only Phase locking plus tilts 
Reconstructed, 

2
PL est

σ̂  
True, 

2
PL true

σ̂  
Reconstructed, 

2
PL+TT est

σ̂  
True, 

2
PL+TT true

σ̂  

7 0.26±0.06 0.5±0.1 0.4±0.1 0.21±0.06 0.11±0.02 
19 0.15±0.03 0.25±0.05 0.19±0.04 0.11±0.02 0.046±0.005 
37 0.12±0.02 0.16±0.02 0.11±0.02 0.07±0.01 0.027±0.002 

 
The impact of the target-plane phase locking as well as local tip/tilt phase aberration compensation on the overall laser 
beam power delivered onto the target is further illustrated in Fig. 5 representing both the on-axis (0) / (0)dif

F FSt I I=  and 

max max / (0)dif
F FSt I I=  vs. the turbulence strength parameter D/r0.  These dependences can be used for comparative 

analysis of various adaptive system configurations characterized by a different number of fiber collimators, the adaptive 
compensation resolution, and atmospheric turbulence conditions.  The advantage of the incorporation of the local tip and 
tilt compensation capabilities into the coherent fiber-array-based systems considered is quite apparent, which confirms 
the conclusion derived in Ref. [2].  At the same time, our analysis demonstrate noticeable efficiency reduction of the 
fiber-array system using the practical phase aberration precompensation technique considered, compared to ideal 
systems with true aberration compensation. 

 
Figure 5.  Atmospheric-averaged Strehl metrics St  [(a) and (c)] and maxSt  [(b) and (d)] vs. D/r0 ratio for no 
compensation [(a)–(d), dotted lines], phase locking only [(a) and (b), solid lines] and phase locking plus local tip 
and tilt compensation [(c) and (d), solid lines] and a different number of subapertures Nsub.  Dashed lines represent 
the corresponding to St  and maxSt  “true” Strehl ratios trueSt  and max trueSt . 
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5.3 Wavefront Sensing and Adaptive Control in Spatially Distributed Turbulence 

In the second part of our numerical analysis we simulated, to a certain extent, laser beam projection over a long (149 km) 
near-horizontal propagation path between Mauna Loa (Hawaii Island) and Haleakala (Island of Maui) mountains, as in 
the Coherent Multi-Beam Atmospheric Transceiver (COMBAT) experiments conducted in February 2010.49  As a point-
source target, we modeled the laser beacon used in these experiments at the Mauna Loa Observatory, which comprised a 
single-mode fiber collimator with a clear aperture of 26 mm and the wavelength λ = 1.55 µm.  The sparse-aperture 
diameter of the receiver telescope D was fixed at 3.67 m, as for the Air Force Advanced Electro-Optical System (AEOS 
telescope).  Since the propagation path simulated is nearly horizontal, the homogeneous turbulence model was used; the 
turbulence strength was adjusted so that D/r0 = 6.  To estimate the efficiency of the adaptive control in phased array of 
fiber collimators, Strehl ratios St  were calculated; the results are presented in the form of a bar diagram in Fig. 6.  
These results prove that the wavefront sensing and adaptive control concept presented can be effectively applied for the 
long-range laser beam projection scenarios characterized by the presence of intensity scintillations of the received wave. 

 
Figure 6.  Atmospheric-averaged Strehl metric values St  for adaptive array of fiber collimators operating in 
distributed turbulence with D/r0 = 6.  In this bar diagram, each set of three bars corresponds to a different number 
of subapertures Nsub indicated at the bottom of the bar sets.  “No AO” (dark-gray bars) denotes no compensation, 
“PL” (medium-gray bars) – phase locking only, and “PL + TT” (light-gray bars) – phase locking plus local tip and 
tilt compensation. 
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