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Adaptive optical systems for laser beam projection onto an extended target embedded in an optically
inhomogeneous medium are considered. A new adaptive optics wavefront control technique—speckle-
average (SA) phase conjugation—is introduced. In this technique mitigation of speckle effects related
to laser beam scattering off the rough target surface is achieved by measuring the SA wavefront slopes
of the target return wave using a conventional Shack–Hartmann wavefront sensor. For statistically re-
presentative speckle averaging we consider the generation of an incoherent light source, referred to here
as a Collett–Wolf beacon, directly on the target surface using a rapid steering (scanning) auxiliary laser
beam. Our numerical simulations and experiment show that control of the outgoing beam phase using SA
phase conjugation can lead to efficient compensation of turbulence effects and results in an increase of
the projected laser beam power density on a remote extended target. The impact of both target aniso-
planatism and the Collett–Wolf beacon size on adaptive system performance is studied. © 2009 Optical
Society of America
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1. Introduction

It is well known that atmospheric turbulence can se-
verely degrade performance of various optical sys-
tems, including the laser beam projection systems
for directed energy applications discussed here.
These systems are designed to create and maintain
a laser spot (target hit spot) of the smallest possible
size on a remotely located object (target) in the atmo-
sphere. Compensation (mitigation) of turbulence ef-
fects in the laser beam projection systems can be
performed by controlling (rapidly shaping) the out-
going laser beam wavefront phase using either adap-
tive optics (AO) wavefront correctors (deformable

and/or segmented mirrors, liquid crystal phase
modulators, etc. [1,2]) or nonlinear optics phase-
conjugation techniques (four-wave mixing, resonance
stimulated Brillouin, or Raman backward scatter-
ing [3,4]).

Pursuing the same goals—a decrease of target hit-
spot size and its brightness increase—this control of
the outgoing beam phase uðr; tÞ can be achieved
using different control algorithms. Here r ¼ fx; yg
is the vector in the transversal to the plane of wave
propagation direction, and t is time.

The best known is the phase-conjugate (PC) wave-
front control algorithm, also referred to here as PC
precompensation. The PC precompensation ap-
proach is based on the assumption that wavefront
phase φðr; tÞ of the received (target-return) wave at
the system’s combined receiver and transmitter
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(transceiver) aperture represents a cumulative sum
of the turbulence-induced phase disturbances accu-
mulated along the propagation path (along optical
axis z) from the target (z ¼ L) to the transceiver
(z ¼ 0) planes and hence can be compensated (pre-
compensated) using conjugation of the return-wave
phase φðr; tÞ that is measured inside the system
transceiver aperture [1,5]. The ideal (infinite spatial
resolution) PC precompensation control can be then
represented in the following simple form uðr; tÞ ¼
−φðr; tÞ.
The outgoing beam precompensation can also be

achieved using conjugation of the return-wave com-
plex amplitude ψ0ðr; tÞ. In this approach, the complex
amplitude of the outgoing wave A0ðr; tÞ obeys the
field-conjugation (FC) condition A0ðr; tÞ ¼ γψ�

0ðr; tÞ,
where γ is the coefficient proportional to the outgoing
beam power [6–9].
In the phase aberration precompensation techni-

que known as model-free metric optimization AO,
the outgoing beam phase control is based on optimi-
zation of specially selected return-wave characteris-
tics (metrics), such as return-wave power inside the
receiver aperture (power-in-the-bucket metric JPIB)
[10], and sharpness of the hit-spot image as de-
scribed by different sharpness functions (metrics
JSF) [11–13]. It is assumed that these metrics are
monotonically dependent on the characteristics of
the target hit-spot brightness, and hence their opti-
mization results in the desired hit-spot brightness in-
crease [14,15].
It is important to note that both wavefront control

techniques (PC/FC) and optimization of metrics JPIB
and JSF) are based on the assumption of a small (un-
resolved or point-source) target or beacon (glint) on
an extended target surface. The target (glint) can
be considered as unresolved if its characteristic size
bT is smaller than the diffraction-limited hit-spot ra-
dius bdif .
In this paper we consider the more general and, for

many practical applications, more interesting case of
an extended (resolved) target assuming that bT ≫

bdif . For resolved targets, the return-wave complex
amplitude ψ0ðr; tÞ is dependent not only on the pro-
pagation medium inhomogeneities but also on the
target shape and surface roughness.
The outgoing beam scattering off an extended tar-

get with a randomly rough surface results in strong
speckle-modulation of the return wave [16–18]. This
speckle modulation is the major problem for both the
PC/FC and metric optimization wavefront control
techniques [6,19,20].
In the presence of speckle modulation, the return-

wave phase φðr; tÞ ¼ φatðr; tÞ þ φsðr; tÞ is composed of
two terms (components): the turbulence-induced
phase φatðr; tÞ and the phase noise term φsðr; tÞ that
results from the outgoing beam scattering off the tar-
get surface. For mitigation of the turbulence-induced
phase component φatðr; tÞ, the phase noise φsðr; tÞ
should be somehow removed from the return-wave
phase measurements.

Consider briefly several techniques that can be ap-
plied for either removing or at least reducing speckle
effects. In the case of a rapidly spinning extended
target, the negative impact of speckles can be poten-
tially mitigated using optimization of either metrics
obtained by time averaging of speckle modulation
(speckle-averaged sharpness functions [13,21]) or
metrics whose values are dependent on statistical
characteristics of the speckle field, which are sensi-
tive to the target hit-spot size (speckle metrics
[17,18,20]). Nevertheless, practical implementation
of wavefront control using optimization of these
metrics is quite limited. Because of the relatively
slow convergence of the metric optimization process,
speckle-modulation averaging and speckle-metric
measurements should be performed during a
relatively short time (typically a few microseconds),
and hence this technique can only be applied for laser
beam projection on rapidly spinning targets (see
[20]).

In the well-known laser guide-star technique, the
speckle-modulation problem does not exist since the
phase measurements are performed using an auxili-
ary incoherent light source (guide-star) generated
with an additional laser [22–24]. Under ideal condi-
tions for guide-star operation, this additional laser
beam can be focused in close vicinity to the target,
thus creating an intense light backscattering. The
backscattering occurs inside a volume of air (guide-
star volume), which is bounded by the focused laser
beam waist. This volume forms a light source used
for wavefront measurements and PC-based precom-
pensation of the outgoing beam.

It is commonly assumed that the guide-star vo-
lume is small enough to be considered as an unre-
solved (point-source) beacon whose size is smaller
than the diffraction-limited beam size. The optical
wave that originates from the guide-star beacon pro-
pagates to the transceiver aperture.Wavefront phase
φgsðr; tÞ of this wave is measured by a wavefront sen-
sor. In the guide-star AO technique, phase φgsðr; tÞ is
used for the outgoing beam PC precompensation in
the form uðr; tÞ ¼ −φgsðr; tÞ.

Note that the coherence time τc of the guide-star
light source is negligibly smaller than the following
three major characteristic times on which the AO
system operation depends: τph, τAO, and τat. Here,
τph is the integration time of a photosensor used
for return field sensing, τAO is the response time of
the AO control system, and τat is atmospheric turbu-
lence characteristic time. For an adaptive beam pro-
jection system based on the guide-star technique, the
following inequalities are fulfilled:

τc ≪ τph < τAO < τat: ð1Þ

This condition plays an important role in the follow-
ing analysis.

The laser guide star approach has several well-
known shortcomings related to the presence of un-
censored wavefront aberration φunðr; tÞ that results
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from a mismatch in the guide-star and target
positions—effects often referred to as angular and fo-
cus (conical) anisoplanatisms [24]. In addition, the
turbulence-induced widening of the propagated laser
beam can lead to the significant increase of the
guide-star volume. As a result, the formed light
source cannot be considered as an unresolved beacon,
and hence conjugation of themeasured phase φgsðr; tÞ
can give only a partial precompensation of the turbu-
lence effects.
In principle, the speckle-free incoherent (partially

coherent) reference light source for wavefront mea-
surements can be created directly on the target sur-
face (target-surface guide star) using an auxiliary
laser illuminator system based on an array of inco-
herently combined lasers. Still, due to the turbu-
lence-induced laser beam(s) widening, beam jitter,
and beam-combining misalignments, the obtained
beacon commonly represents an extended light
source. As a result the measured phase φgsðr; tÞ can
be “corrupted” by the presence of the phase compo-
nent associated with the incoherently illuminated
area at the target surface.
In this paper we consider a different approach for

the mitigation of speckle effects in adaptive laser
beam projection systems. The target-surface incoher-
ent beacon is created using either the projected laser
beam itself or a single auxiliary laser illuminator
beam. In the last case the laser illuminator is used
for wavefront sensing and adaptive precompensation
of the projected beam. In general terms this approach
uses a difference in the characteristic time scales
(either existing or artificially created) of the return-
wave modulation caused by either the outgoing beam
scattering off the target rough surface (time scale τs)
or by the atmospheric turbulence and/or AO system
operation (time scales τAO and τat).
We assume here that the characteristic time τs is

(or can be made) sufficiently shorter than the corre-
sponding characteristic times τAO and τat, so that
the following inequalities, referred to here as the
speckle-averaging condition, are fulfilled:

τs ≪ τph < τAO < τat: ð2Þ

The inequality τs ≪ τph indicates that during the in-
tegration time τph of the AO system sensor, a large
number of speckle-field realizations pass through
the receiver aperture, and hence the obtained re-
turn-wave measurements correspond to the speckle
field time-averaged characteristics. These measure-
ments are referred to here as the speckle-average
(SA) measurements [21].
From condition (2) it follows that the photodetector

integration time τph is significantly shorter than the
characteristic times τAO and τat. This is the case when
both turbulence- and AO-induced phase variations
can be considered as stationary (“frozen”) during
SA measurements.
The inequalities (2) are automatically fulfilled for

laser beam projection onto a fast-spinning extended

target with a randomly rough surface. The return-
wave speckle-pattern update time τs ∼ bs=vT is then
associated with the target-surface roughness realiza-
tions update inside the target hit-spot illuminated
area, where bs is a characteristic beam (hit-spot) size
at the target surface, and vT is the target surface ve-
locity [21].

For a stationary (or slow-moving/spinning) target,
the speckle-averaging condition (2) can be artificially
imposed by introducing small amplitude, rapid steer-
ing (scanning) of the outgoing laser beam, resulting
in the target hit-spot displacements inside a bounded
region of the target. These fast hit-spot displace-
ments lead to the roughness realizations update in-
side the illuminated area of the target surface and
hence cause a rapid update of the speckle-field pat-
tern realization inside the receiver aperture of the
wavefront sensor.

To obtain a statistically representative ensemble
of speckle-field realizations at the receiver plane,
the amplitude of the hit-spot displacement bscan
should be larger than the target hit spot bs. At the
same time, the distance bscan should be smaller than
the isoplanatic patch bisp to prevent unwanted aver-
aging of the atmospheric turbulence-induced phase
distortions within the propagation medium volume
of the steered laser beam.

At the time scale of the sensor integration time
τph ≫ τs, referred to here as slow time, the quasi-
monochromatic optical field scattered off an ex-
tended target with a rapidly moving diffusely reflec-
tive surface can be associated with an optical wave
originating from an extended incoherent (partially
coherent) light source known as the Collett–Wolf
light source [25–27]. In this paper we use the
term the Collett–Wolf beacon since this light source
represents a beacon used for the outgoing beam
phase precompensation.

For rapidly spinning cylindrical-shape targets
with radius rT ≫ bs, the Collett–Wolf beacon charac-
teristics (size and brightness) are determined by the
instantaneous target-plane intensity distribution
ITðr; tÞ. For the case of outgoing beam scanning,
the corresponding Collett–Wolf beacon depends on
the scanning beam trajectory.

The first question to ask is how we can define the
phase of an optical wave that originates from the
Collett–Wolf beacon? In Section 2, this phase (SA
phase) defined through the return-wave SAmeasure-
ments performed with an ideal (infinite-resolution)
Shack–Hartmann (SH) wavefront sensor. It can be
shown (see [21]) that if the speckle-averaging condi-
tions (2) are satisfied, then the functionΦðr; tÞ that is
reconstructed from SA measurements describes a
surface that is orthogonal to the return-wave en-
ergy-flux vector at each point r of the receiver aper-
ture. In the speckle-average phase-conjugation (SA
PC) technique described, the control of the outgoing
beam phase uðr; tÞ is based on conjugation of the SA
phase Φðr; tÞ; that is, uðr; tÞ ¼ −Φðr; tÞ.

1 January 2009 / Vol. 48, No. 1 / APPLIED OPTICS A15



Note the similarity of the inequalities (1) and (2)
that are required for adaptive wavefront phase pre-
compensation using either an auxiliary spatially in-
coherent beacon (guide star or surface guide star), or
the Collett–Wolf beacon. This similarity implies that
the approach presented here can also be applied to
analysis of AO techniques based on the use of an
extended laser guide-star volume or a target-surface
guide star. Nevertheless, for definitiveness we
further consider only the Collett–Wolf beacon asso-
ciated with the outgoing beam scattering off the
Lambertian target surface.
The mathematical and numerical models of an

adaptive laser beam projection system based on
the Collett–Wolf beacon are presented in Section 3
for targets with the Lambertian surface roughness.
The numerical analysis of the system performance
is performed using both the MC and BF methods.
In Section 4 the efficiency of the SA PC precompen-

sation is analyzed using numerical simulations. It is
shown that for a resolved and moving (spinning) tar-
get the SA PC precompensation leads to the efficient
compensation of atmospheric turbulence-induced
phase aberrations and the corresponding increase
of target hit-spot brightness.
Results of the bench-top experiments with the

adaptive beam projection system based on the SA
PC wavefront control technique are presented in
Section 5.

2. Speckle-Average Wavefront Phase

A. Instantaneous Wavefront Slopes

Consider an outgoing laser beam projection onto an
extended target with the Lambertian surface using
an AO system. Represent the complex amplitude
ψðr; z; tÞ of the return field at the receiver aperture
plane in the form

ψðr; z ¼ 0; tÞ≡ ψ0ðr; tÞ ¼ I01=2ðr; tÞ exp½iφðr; tÞ�; ð3Þ

where φðr; tÞ and I0ðr; tÞ are the return-wave instan-
taneous phase and intensity. We assume that the
adaptive system is equipped with a SH wavefront
sensor located in the image plane of the beam projec-
tion telescope pupil and that the complex amplitude
of the wave entering this sensor coincides with
ψ0ðr; tÞ.
The SH sensor is composed of an array of N den-

sely packed small lenses (lenslet array) with identi-
cal focal length F and a photoarray in the lenslet
array focal plane [28]. The sensor measures the
return-wave centroid vectors frcjg corresponding to
the first moment of the intensity distributions in
the focal plane of the jth lenslet, where j ¼ 1; :::;N.
The centroid vectors frcjg are used for calculations
of the phase gradient vectors f∇φj

ðtÞg or the corre-
sponding slope vectors fαjðtÞg:

fαjðtÞg≡ fk−1∇φj
ðtÞg ¼ frcj ðtÞg=F; ðj ¼ 1:; :::;NÞ; ð4Þ

where k ¼ 2π=λ is wavenumber [1,28].
In the limiting case of N → ∞ corresponding to

high-resolution wavefront sensing considered here,
the slope vectors in Eq. (4) can be replaced by the vec-
tor function

αðr; tÞ ¼ 1
k
∇φðr; tÞ: ð5Þ

The speckle-field phase φðr; tÞ can then be recon-
structed by integrating the measured slopes αðr; tÞ
[30]. It can be shown (see [21]) that vector function
αðr; tÞ can be represented in the following form:

αðr; tÞ ¼ S⊥ðr; tÞ=I0ðr; tÞ; ð6Þ
where vector

S⊥ðr; tÞ ¼
1
2ik

�
ψ�
0ðr; tÞ∇ψ0ðr; tÞ − ψ0ðr; tÞ∇ψ�

0ðr; tÞ
�

ð7Þ

coincides with the transverse component of the
energy-flux vector (Poynting vector) [30].

B. Speckle-Average Slopes

Assume now that the outgoing laser beam is pro-
jected onto an extended planar target with a rapidly
moving randomly rough surface, so that the speckle-
averaging condition (2) is satisfied. The speckle-
averaging measurements performed using the
high-resolution SH wavefront sensor result in the
time-averaged slope vector function hαðr; tÞi. By sub-
stituting the time averaging in the expressions (4)
and (5) by statistical averaging over an ensemble
of the return-wave realizations (denoted here as
his, we obtain [21]

hαðr; tÞis ¼
hS⊥ðr; tÞis
hI0ðr; tÞis

¼ hψ�
0ðr; tÞ∇ψ0ðr; tÞis − hψ0ðr; tÞ∇ψ�

0ðr; tÞis
2ikhψ0ðr; tÞψ�

0ðr; tÞis
:

ð8Þ

Here we assumed that the intensity I0ðr; tÞ and
phase gradient ∇φðr; tÞ are statistically independent
functions.

This expression can be further transformed using
the mutual correlation function (MCF) of the return
random field defined as

Γ0ðr1;r2;tÞ≡ hψ0ðr1;tÞψ�
0ðr2;tÞis; ð9Þ

where r1 and r2 are vectors at the receiver plane
[21,26]. In the sum and difference coordinates R ¼
ðr1 þ r2Þ=2 and ρ ¼ ðr1 − r2Þ from Eq. (9) we obtain

Γ0ðρ;R; tÞ≡ hψ0ðRþ ρ=2; tÞψ�
0ðR − ρ=2; tÞis: ð10Þ
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Note, that the MCF in Eqs. (9) and (10) depends
on the “slow” time t that characterizes temporal pro-
cesses occurring on the time scale of adaptive system
operation and atmospheric effects.
Using Eq. (10) the SA slopes hαðr; tÞis in Eq. (8) can

be represented in the following equivalent form [21]:

hαðR; tÞis ≡ hS⊥ðR; tÞis=hI0ðR; tÞis ¼ ðikÞ−1
×∇ρ lnΓ0ðρ → 0;RÞ; ð11Þ

where the notation ρ → 0 indicates that the gradient
over the difference vector ρ is computed at the point
ρ ¼ 0. This expression can be further simplified
using the known relationship between the mutual
correlation function Γ0ðρ;R; tÞ and the BF
B0ðθ;R; tÞ [21,26]. The latest is defined by the Fourier
transform of the MCF (10) over the difference coordi-
nate ρ:

B0ðθ;R; tÞ ¼
1

ð2πÞ2
Z

Γ0ðρ;R; tÞ expð−ikθρÞd2ρ; ð12Þ

where θ is the Fourier transform angular coordinate
vector. Using this expression from Eq. (11) we finally
obtain [21]

hαðr; tÞis ¼
R
θB0ðθ; r; tÞd2θR
B0ðθ; r; tÞd2θ

: ð13Þ

The right-hand side of this expression describes the
BF angular momentum. The representation of the
SA slope vector function hαðr; tÞis in Eq. (13) is used
as the BF angular momentum in the numerical ana-
lysis of the adaptive beam projection systems in
Section 3.

C. Speckle-Average Phase

Assume that the SA slope function hαðr; tÞis is a path-
independent vector field. In this case the SA slope
function hαðr; tÞis can be represented as a gradient
of an auxiliary potential function Φðr; tÞ [30]:
hαðr; tÞis ¼ ∇Φðr; tÞ=k:The function Φðr; tÞ can be
reconstructed from the SA slopes hαðr; tÞis, similar
to how the instantaneous phase φðr; tÞ is recon-
structed from the instantaneous wavefront slopes
αðr; tÞ. For this reason, φðr; tÞ can be formally referred
to as the speckle-average phase associated with an
optical wave originating from an extended Collett–
Wolf beacon.
To illustrate the physical meaning of the SA phase,

compare Eqs. (8) and (14) for hαðr; tÞis. As a result, we
obtain

hS⊥ðr; tÞis
hI0ðr; tÞis

¼ 1
k
∇Φðr; tÞ: ð15Þ

This equality shows that gradient ∇Φðr; tÞ is colli-
near to the direction of the averaged energy-flux vec-
tor hS⊥ðr; tÞis. Correspondingly at each point r of the
transceiver aperture, the plane tangent to the sur-

face defined by the function Φðr; tÞ, is orthogonal
to the averaged energy-flux vector hS⊥ðr; tÞis.

As pointed out in [21], the SA phase Φðr; tÞ) may
not coincide with the phase hφðr; tÞis corresponding
to speckle averaging of the instantaneous phases
fφðr; tÞg obtained for different realizations of tar-
get-surface roughness.

D. Speckle-Average Phase Conjugation

Consider an application of the SA phase Φðr; tÞ for
control of the outgoing beam phase. Similar to
the conventional phase-conjugate precompensation
algorithm, we assume the following wavefront con-
trol rule:

uðr; tÞ ¼ −Φðr; tÞ; ð16Þ

referred to here as the SA PC. Note that for a
point-source target, functions Φðr; tÞ and φðr; tÞ are
identical, and correspondingly the precompensation
rule (16) coincides with conventional phase conju-
gation.

The key question is if the replacement of the in-
stantaneous phase function φðr; tÞ in the PC control
algorithm by the SA phaseΦðr; tÞ results in improve-
ment of the laser beam projection performance?

Consider first a special case that can be analyzed
analytically—the adaptive laser beam projection
onto an extended target with a rapidly moving ex-
tended Lambertian surface in the presence of a sin-
gle thin phase-distorting layer located at the pupil
plane (pupil-plane phase screen)[21]. This phase
screen introduces phase aberration φatðr; tÞ into both
the outgoing and received waves. The incoherent ex-
tended beacon (Collett–Wolf beacon) is then defined
by the target-plane intensity distribution for the out-
going beam ITðr; tÞ ¼ jAðr; z ¼ L; tÞj2.

As shown in [21] the SA phase Φðr; tÞ can then be
derived analytically:

Φðr; tÞ ¼ φatðr; tÞ þ φqðrÞ þ φtiltðr; tÞ: ð17Þ

Here φqðrÞ ¼ −kr2=ð2LÞ is the quadratic phase
component corresponding to the divergent spherical
(parabolic) wavefront with the curvature radius, and
φtiltðr; tÞ ¼ ðk=LÞrcðtÞr is the wavefront tilt compo-
nent. Function φtiltðr; tÞ depends on the beam cen-
troid vector

rcðtÞ ¼
R
rITðr; tÞd2rR
ITðr; tÞd2r

: ð18Þ

The SA PC precompensation can then be repre-
sented in the form

uðr; tÞ ¼ −Φðr; tÞ ¼ uoptðr; tÞ − φtiltðr; tÞ; ð19Þ

where uoptðr; tÞ ¼ −φatðr; tÞ − φqðrÞ is the phase corre-
sponding to the ideal (optimal) compensation of the
pupil-plane phase aberration φatðr; tÞ. Thus SA
PC precompensation results in the formation of
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the diffraction-limited spot on the extended target
surface. The target hit-spot centroid coincides with
the centroid for the target hit-spot intensity prior
to phase precompensation [21].
In Sections 3 and 4, using numerical simulations,

we consider a more general case of SA PC precom-
pensation assuming that the laser beam propagation
occurs in an extended phase distorting medium cor-
responding to the Kolmogorov turbulence model
(propagation through deep turbulence).
The following three beam-projection scenarios are

analyzed. First (Section 3.C), we consider beam pro-
jection onto a planar extended target with a rapidly
moving Lambertian surface. At each fixed time t ¼ t0
(slow time), the Collett–Wolf beacon is then defined
by the target-plane intensity distribution ITðr; t0Þ.
This beacon is used for the SA PC wavefront control
of the outgoing beam.
Second (Section 3.D), to investigate effects related

solely to the beacon size, we assumed a single-pass
atmospheric propagation of an optical wave that ori-
ginates from a stationary incoherent extended light
source in the form of a cigar or square (stationary
beacons) placed at the target plane. The correspond-
ing Collett–Wolf stationary beacons of various sizes
are used for SA PC precompensation.
Third (Section 4.B), we analyze an outgoing beam

scattering off a stationary extended target with a
Lambertian surface. The Collett–Wolf beacon is then
created by using a small-amplitude periodic rapid
angular steering of an auxiliary laser beam.

3. Speckle-Average Phase Computation

A. Mathematical Model

Propagation of the outgoing and return waves in an
optically inhomogeneous medium can be described
by a system of parabolic wave equations for the com-
plex amplitudes Aðr; z; tÞ and ψðr; z; tÞ [30,21]:

2ik
∂Aðr; z; tÞ

∂z
¼ ∇2

⊥
Aðr; z; tÞ þ 2k2n1ðr; z; tÞAðr; z; tÞ;

ð20Þ

− 2ik
∂ψðr; z; tÞ

∂z
¼ ∇2

⊥
ψðr; z; tÞ þ 2k2n1ðr; z; tÞψðr; z; tÞ;

ð21Þ

where 0 ≤ z ≤ L, ∇2
⊥
¼ ∂2=∂2xþ ∂2=∂2y is the

Laplacian operator over the transversal coordinates
and n1ðr; z; tÞ is a function describing spatiotemporal
dynamics of refractive index fluctuations.
Represent the outgoing beam complex amplitude

at the transceiver plane in the form

Aðr; z ¼ 0; tÞ ¼ A0ðrÞ exp½iuðr; tÞ�; ð22Þ

where A0ðrÞ and uðrÞ are the amplitude and the con-
trolling wavefront phase, respectively.

The scattering of the outgoing beam off the target
with a randomly uniform and planar surface is de-
scribed by the following simplified model [21,31]:

ψðr; z ¼ L; tÞ ¼ Tðr; tÞAðr; z ¼ L; tÞ; ð23Þ

where Tðr; tÞ ¼ V0 exp½iξðr; tÞ� is the extended-target
complex scattering coefficient, and V0 ¼ constant.
The stationary, isotropic random function ξðr; tÞ de-
scribes the phase modulation that results from the
outgoing wave scattering off the target rough sur-
face. For the Lambertian surface considered, ξðr; tÞ
is the delta-correlated function.

B. Monte Carlo and Brightness Function Techniques

Numerical modeling of the laser beam projection
system was performed using both the MC and the re-
cently developed BF techniques [18,21]. The MC ap-
proach is based on direct numerical integration of
wave-optics equations (20) and (21) with the bound-
ary conditions (22) and (23) at the transceiver and
target planes.

For computation of the SA phase Φðr; tÞ at fixed
time t ¼ t0 using the MC approach, the propagation
equations (20) and (21) were integrated with the un-
changed “frozen” optical inhomogeneities [function
n1ðr; z; t0Þ in Eqs. (20) and (21)] but with a large num-
ber Ns of random realizations of the target random
surface roughness [function ξðr; t0Þ in Eq. (23)]. The
obtained speckle-field realizations fψ0ðr; t0Þg were
used for numerical estimation of the SA slopes
hαðr; t0Þis using Eq. (8). The number of random rea-
lizations of the target random surface roughness Ns
was chosen to be sufficiently large (50–100) to
achieve an accurate approximation (with less than
10% error) of the slope function hαðr; t0Þis. The SA
phase Φðr; t0Þ was calculated from the SA slopes
using numerical integration of Eq. (14).

Since the MC technique is extremely computation-
ally expensive, in the numerical simulations de-
scribed in Sections 3 and 4, this approach was
primarily used only for independent evaluation of
the results obtained with the BF method. In the BF
method, the parabolic equation (20) and the bound-
ary condition (22) were used for calculation of the in-
tensity distribution on the target surface ITðr; t0Þ ¼
jAðr;L; t0Þj2 corresponding to “frozen” optical inhomo-
geneities. This step is identical in both the MC and
BF methods. The principal difference between these
two methods is in computation of the slope func-
tion hαðr; t0Þis.

To illustrate the BF method, consider first beam
projection onto an extended target with rapidly
moving Lambertian surface roughness (e.g., a spin-
ning cylindrical target) and assume that the
speckle-averaging conditions (2) are fulfilled. The
slope function hαðr; t0Þis in the BF method is calcu-
lated using Eq. (13) for the BF of the return field
B0ðθ;R; t0Þ at the transceiver plane z ¼ 0. Similar
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to the MC method, the SA phase Φðr; tÞ is further
calculated by integration of the slope function
hαðr; t0Þis [Eq. (8)].
As shown in [21], the BF at the receiver plane

B0ðθ;R; t0Þ can be obtained by integration of the fol-
lowing equations for the BF trajectories (rays)
fRðz; tÞ; θðz; tÞg:

dRðz; tÞ
dz

¼ θðz; tÞ; dθðz; tÞ
dz

¼ −∇Rn1ðR; z; tÞ: ð24Þ

The first equation defines θ as a vector tangent to
the trajectory along which the BF is a constant, while
the second equation describes evolution of the tan-
gent vector along the optical axis caused by optical
inhomogeneities. Equations (24) link the BF at the
receiver plane B0ðθ;R; t0Þ with the corresponding
values of the BF BLðθ;R; t0Þ at the target so that
at each point of the BF trajectory we have
B0ðθ;R; t0Þ ¼ BLðθ;R; t0Þ.
Assuming that the BF BLðθ;R; t0Þ at the target

plane and optical inhomogeneities [function n1ðr;
z; t0Þ] are known, numerical integration of the ray
equations (24) results in the desired BF values
B0ðθ;R; t0Þ at the receiver plane.
The function BLðθ;R; t0Þ defines the boundary con-

dition for the BF trajectories at the target plane. This
function can be obtained from the beam scattering
condition (23). It can be shown (see [21]) that for a
target with a planar Lambertian surface, function
BLðθ;R; t0Þ depends on the outgoing beam target-
plane intensity distribution

BLðθ;R; t0Þ ¼ cITðR; t0Þ; ð25Þ

where c > 0 is a constant insignificant for this ana-
lysis. The boundary condition (25) coincides with the
corresponding boundary condition for a spatially in-
coherent light source whose brightness is described
by function ITðR; t0Þ. This incoherent light source de-
fines the corresponding Collett–Wolf beacon. Note
that the actual optical waves originating from either
the incoherent light source or the outgoing beam
scattering off the target surface are quite different.
Nevertheless, under the same propagation condi-
tions, phase function ψCWðr; tÞ corresponding to the
incoherent light source with brightness ITðr; t0Þ
(Collett–Wolf beacon) and function Φðr; tÞ recon-
structed from the time-averaged slopes hαðr; t0Þi of
the return wave coincide.
From the computational viewpoint, the brightness

method is significantly more efficient compared with
the MC technique mostly because the BF technique
does not require multiple integrations of the return-
wave propagation equation (21) to obtain a statisti-
cally representative ensemble of the random complex
amplitudes fψ0ðr; t0Þg required for calculation of SA
slopes hαðr; t0Þis. Comparison of both MC and BF
methods is presented in Ref. [18].
In the numerical simulations we used the outgoing

beam with the amplitude described by the normal-

ized super-Gaussian function A0ðrÞ ¼ exp½−ðr2=a2
0Þ16�

of radius a0 (flat-top beam).
The parabolic phase uðr; t ¼ 0Þ ¼ u0ðrÞ ¼ kr2=ð2LÞ

was used as the outgoing beam phase prior to SA
phase conjugation.

Propagation of the flat-top beam with phase u0ðrÞ
in vacuum results in the diffraction-limited intensity
distribution at the target plane described by the Airy
function [32]:

IAiryT ðrÞ ¼ I0T

�
2J1ðkra0=LÞ

kra0=L

�
2
; ð26Þ

where I0T is a normalization factor. The diffraction-
limited hit-spot radius bdif ¼ 3:83L=ðka0Þ is defined
by the first zero of the Airy function (26). The inten-
sity distribution (26) is shown in Fig. 1 (the picture in
the top left corner) for the propagation distance
L ¼ 0:05Ka20. Note that the distance L used in com-
putations was fixed.

The computations were performed using a numer-
ical grid withN ×N ¼ 512 × 512 pixels. The transcei-
ver aperture of diameter D ¼ 2a0 was located in the
grid central area of diameter N=4 pixels.

The atmospheric turbulence was modeled by a set
of Nph ¼ 20 equally distanced along the propagation
path, random phase screens with statistical charac-
teristics corresponding to the Kolmogorov power
spectra [33]. This number of phase screens was
selected to ensure less than 5% variation in the aver-
aged target-plane intensity distribution with an ad-
ditional increase of the number of phase screens
used. The turbulence strength was characterized
by the ratio D=r0 of the transceiver aperture
diameter D to the Fried parameter r0 for the plane
wave [34].

Equations (24) for the BF trajectories were inte-
grated for each grid point inside the transceiver aper-
ture using a bundle of 150 × 150 rays with initial
angular vectors θ ¼ fθx;θyg belonging to a square
angular region of size −θ0 < θxy < θ0, where θ0 ¼
1:5ðbC−Ws =LÞ and bC−Ws is the characteristic size of
the Collett–Wolf beacon at the target surface.

C. Collett–Wolf Beacon for a Rapidly Scanning Laser
Beam

Assume now that the target is stationary (or quasi-
stationary) and hence the speckle-averaging condi-
tion (2) is not satisfied. In this case, we cannot
associate a Collett–Wolf beacon with the return
wave. Nevertheless, as already mentioned in
Section 1, we can artificially impose a fast change
in the return field speckle pattern realizations by
rapidly changing (steering) the outgoing beam propa-
gation direction, resulting in the desired displace-
ment of the hit spot at the target surface. This
instantaneous hit-spot displacement at the target
surface can be described by the beam centroid vector
rcðtÞ [see Eq. (18)]. Assume for simplicity that during
the time interval ðt0;t0 þ τphÞ, the beam centroid
moves with a constant velocity along a trajectory
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(hit-spot trajectory) L. Since, for each point rc of this
trajectory the outgoing beam propagates through a
slightly different path, the target-plane intensity
distribution ITðr; rc; t0Þ depends on rc. During the
time interval ðt0; t0 þ τphÞ the Collett–Wolf beacon as-
sociated with such hit-spot displacement can then be
defined by an averaged intensity ILTðr; t0Þ obtained by
integrating ITðr; rc;t0Þ along the hit-spot trajectory:

ILTðr; t0Þ ¼ l−1
Z
L

ITðr; rc; t0ÞdlðrcÞ; ð27Þ

where dlðrcÞ is the small element of the hit-spot tra-
jectory of length l at the point rc. The corresponding

Collett–Wolf beacon is then described by the bound-
ary condition for the BF at the target plane:

BLðθ;R; t0Þ ¼ cILTðR; t0Þ: ð28Þ
In the case when the amplitude of the hit-spot dis-

placement is small so that the trajectory L is located
within the isoplanatic path, the Collett–Wolf beacon
can be described by the following function:

ILTðr; t0Þ ¼ l−1
Z
L

ITðr − rc; t0ÞdlðrcÞ: ð29Þ

The Collett–Wolf beacon can also be created using
an auxiliary laser beam. Note that although this
beam does not need to share the same optical train

Fig. 1. Stationary beacons (top row) and their impact on the characteristics of the target return wave: the instantaneous speckle-field
intensity jψ0ðrÞj2 (second row) and phase φðrÞ ¼ arg½ψ0ðrÞ� (third row) for the coherent beacons and the SA phaseΦðrÞ for the Collett–Wolf
beacons (bottom row). Intensity patterns for the beacons are (from left to right) the diffraction-limited (Airy) beacon, square beacons with
bsq ¼ 2bdif and bsq ¼ 4bdif , and a cigar beacon with bcg ¼ 4bdif . The propagation conditions (the set of Kolmogorov phase screens with
D=r0 ¼ 5 and the distance to the target L ¼ 0:05 × ka20) used in computations for all beacons are identical. In phase patterns (third
and forth row) are shown with the removed parabolic phase component φqðrÞ ¼ kr2=ð2LÞ.
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with the projected beam, both beams should share
the same receiver optical path.

D. Stationary Beacon: Basic Models

Consider several examples of Collett–Wolf beacons.
Note that in the target-in-the loop propagation geo-
metry, turbulence-induced refractive index perturba-
tions have a twofold impact on the SA phase. On the
one hand, their presence affects the intensity distri-
bution on the target surface ITðr; tÞ defining the cor-
responding Collett–Wolf beacon on which the SA
phase Φðr; tÞ depends. On the other hand, refractive
index inhomogeneities cause phase aberrations of
the return optical wave and hence directly affect both
the instantaneous and the SA phase.
To distinguish these two effects, consider first the

unidirectional propagation of an optical wave corre-
sponding to a stationary (independent of turbulence)
Collett–Wolf beacon. Assume that this beacon is de-
fined by the time-independent (stationary) intensity
distribution ITðrÞ. In the numerical simulations, we
considered the following three stationary beacons:

a. Airy beacon—the diffraction-limited beacon
described by the target-plane intensity distribution
ITðrÞ ¼ IAiryT ðrÞ in Eq. (26).
b. Square beacon—the beacon with an intensity

pattern in the form of a square of size bsq defined
by the following super-Gaussian function

ITðrÞ ¼ IsqT ðrÞ≡ I0T exp½−ðx=bsqÞ16 − ðy=bsqÞ16�; ð30Þ
where I0T is a constant.
c. Cigar beacon—the beacon defined by the inten-

sity distribution in the form

ITðrÞ ¼ IcgT ðrÞ≡ IAiryT ðxÞ exp½−ðy=bcgÞ16�; ð31Þ
where IAiryT ðxÞ is the Airy function of the coordinate x
[see Eq. (26)]. The intensity pattern (31) has the
shape of a vertically oriented cigar of width bdif

and length bcg > bdif . Examples of the Airy, square,
and cigar beacons are shown in Fig. 1 (top row).

The Airy beacon represents the smallest incoher-
ent Collett–Wolf beacon that can be created at the
target surface with the outgoing flat-top beam of dia-
meter D. The square and cigar beacons, as defined by
the target-plane intensity distributions (30) and (31),
represent models of ideal Collett–Wolf beacons cre-
ated by rapid steering of the outgoing beam along
vertical line of length bcg for the cigar and x − y beam
steering with amplitude bsq for the square beacon.
To illustrate the difference between the instanta-

neous and SA phase, we also analyze unidirectional
propagation of the return wave with the complex am-
plitude at the target plane

ψðr; z ¼ LÞ ¼ I1=2T ðrÞ exp½iξðrÞ�; ð32Þ

where ξðrÞ is a random delta correlated on a numer-
ical grid phase function phase and I1=2T ðrÞ is the

target-plane amplitude corresponding to intensity
distributions identical to those for the incoherent
Collett–Wolf beacons in Eqs. (26), (30), and (31).
The condition (32) describes scattering of the
collimated laser beam with intensity ITðrÞ off the
Lambertian surface. Similarly, as the Collett–Wolf
beacon is described by the boundary conditions
(25) or (28) for the BF, the boundary condition (32)
can also be associated with a beacon referred to here
as a coherent beacon. For example, the coherent
square beacon is defined by Eq. (32) with ITðrÞ ¼
IsqT ðrÞ. The instantaneous phase corresponding to
the coherent beacon is defined as φðrÞ ¼ arg½ψ0ðrÞ�.
E. Instantaneous and SA Phase for an Extended Beacon

In the computation of both instantaneous and
speckle-averaged return-wave characteristics corre-
sponding to either a coherent or Collett–Wolf beacon,
we used an identical set of 20 equally distanced ran-
dom Kolmogorov phase screens. The random realiza-
tion of the phase function ξðrÞ in Eq. (32) was
identical for all beacons.

Examples of the instantaneous speckle-field inten-
sity jψ0ðrÞj2 and phase φðrÞ distributions for different
coherentbeaconsare shown inFig. 1 (secondand third
rows) as gray-scale patterns. The return-wave inten-
sity distributions (second row) have a well-defined
speckle structure. The characteristic speckle size de-
creases with the increase of the beacon size [18,35].

The corresponding instantaneous phase functions
(third row) have a topological structure with the
wavefront phase dislocations (branch points) typical
for speckle fields [36]. The number of branch points
increases with the increase of the beacon size. As
mentioned in Section 1, the instantaneous phase is
composed of the turbulence-induced phase φatðrÞ
and the phase component φsðrÞ that resulted from
the outgoing beam scattering off the target surface
(speckle-phase component). As seen from the phase
patterns in Fig. 1, the speckle phase component is
highly sensitive with respect to the beacon size. Note
that the turbulence-induced phase component φatðrÞ
in Fig. 1 has a small-scale random modulation in a
vortex-type phase pattern.

The SA phase patterns in Fig. 1 (bottom row) are
quite similar. The SA phase ΦðrÞ in this figure does
not have branch points and is only weakly dependent
on the beacon size and shape. At the same time, the
SA phase is highly sensitive to the random realiza-
tion of refractive index inhomogeneities (phase
screen realization). This is contrary to the speckle-
field phase whose spatial structure is mainly depen-
dent on target shape, size, and roughness realization.

4. Speckle-Average Phase Conjugation: Numerical
Analysis

A. Phase-Conjugate Precompensation for a Stationary
Beacon

Compare the efficiency of outgoing beam precompen-
sation using conjugation of either the instantaneous
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phase φðrÞ (PC control) or the SA phase ΦðrÞ (SA PC
control) for the stationary beacons shown in Fig. 1
(top row). In the numerical simulations, we used the
outgoing beam with flat-top amplitude A0ðrÞ [see
Eq. (22) ] and phase uðrÞ ¼ −φðrÞ for PC and uðrÞ
for SA PC control correspondingly. The same set of
phase screens was used for both computation of the
phase functions and PC or SA PC precompensation.
Images of the target-plane intensity patterns ob-

tained with conjugation of the speckle-field phase
φðrÞ (top row) and SA phase ΦðrÞ (bottom row) are
shown in Fig. 2. For all beacons used in the numerical
simulations, the SA PC control resulted in signifi-
cantly better laser beam projection performance
(smaller target hit spot) than PC precompensation.
Note that the target hit-spot intensity patterns for
SA PC control in Fig. 2 are practically independent
of the beacon shape. Note that similar calculations
performed for circular and rectangular shaped
beacons led to similar results. Contrarily, the corre-
sponding intensity distributions for PC precompen-
sation are quite different. For PC control, the
increase in beacon size resulted in a noticeable de-
cline in the compensation efficiency (see intensity
patterns in the first row in Fig. 2).
The efficiency of PC and SA PC precompensation

algorithms can be evaluated using the target-plane
metrics—characteristics of the target hit-spot inten-
sity ITðrÞ. In Fig. 2 this evaluation is based on the
Strehl ratio St ¼ max½ITðrÞ�=max½IAiryT ðrÞ� and the
normalized sharpness metric J2 (sharpness function)
that is defined as [11]

J2 ¼
Z

I2TðrÞd2r=
Z

IAiryT ðrÞd2r: ð33Þ

The corresponding values of the St and J2 metrics
are shown in Fig. 2 below the corresponding intensity
patterns. Note that the target-plane metrics for SA
PC precompensation are approximately equal for
all Collett–Wolf beacons shown in Fig. 1 and signifi-
cantly exceed the corresponding metric values
achieved with PC control.

B. SA Phase-Conjugation Based on a Beam Steering-
Induced Beacon

Assume now that the Collett–Wolf beacon is created
using small amplitude fast steering of the outgoing
laser beam. Since, in this case, intensity distribution
on the target surface depends on optical inhomogene-
ities, the corresponding Collett–Wolf beacon is non-
stationary. For comparison of nonstationary and
stationary beacons, consider steering of the outgoing
beam that results in beam centroid displacement
along the vertical line of length bcg ¼ 4bdif . For pro-
pagation in vacuum, this beam steering leads to the
formation of a stationary cigar beacon similar to one
shown in Fig. 1 in the top right corner. In the pre-
sence of turbulence, the corresponding nonstationary
cigar-type pattern is highly distorted, as demon-
strated in Fig. 3(a).

In numerical simulations, the corresponding
Collett–Wolf beacon was calculated using multiple
integration of the propagation equation (20) for the
outgoing beam with flat-top amplitude A0ðrÞ and
M different phase functions

uðrÞ ¼ uðmÞðrÞ ¼ uqðrÞ þ uðmÞ
tilt ðrÞ;m ¼ 0;…;M: ð34Þ

Here, uqðrÞ ¼ kr2=ð2LÞ is the quadratic phase
corresponding to optimal focusing of the laser beam
at the target plane in vacuum and uðmÞ

tilt ðrÞ ¼ kθmy
are wavefront tilt components corresponding to the

Fig. 2. Target-plane intensity obtained with conjugation of the instantaneous phase (PC control) in the top row and SA phase (SA PC
control) in the bottom row for the Airy beacon (first column), square beacon with bsq ¼ 2bdif (second column) and with bsq ¼ 4bdif (third
column), and for the cigar beacon with bcg ¼ 4bdif (fourth column). The corresponding patterns of beacon intensity, phase, and SA phase
are shown in Fig. 1. The diffraction-limited intensity pattern is shown in the inset. The values of the target-plane metric J2 and St are
given below the corresponding intensity patterns. The propagation parameters are the same as in Fig. 1.
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M þ 1 different steering angles θm ¼ ðm −M=2Þ
ðθ0=MÞ. For the target hit-spot trajectory of length
bcg, the angular steering amplitude is given by
θ0 ¼ bsg=L. The Collett–Wolf beacon in Fig. 3(a) is ob-
tained by calculating the sum of the target-plane
intensity distributions corresponding to M ¼ 10 pro-
pagation angles θm in Eq. (34). The SA phase for this
beacon is shown in Fig. 3(b). Note that this phase is
similar to the corresponding SA phase pattern in
Fig. 1 (right bottom picture) obtained for the station-
ary cigar beacon of nearly equal length.
The target-plane intensity distribution computed

using SA PC wavefront control based on the beam
steering-induced (nonstationary) Collett–Wolf bea-
con is presented in Fig. 3(c). Note that this intensity
distribution and the target-plane intensity in Fig. 2
for the stationary cigar beacon are very similar, and
the corresponding metric St and J2 for the stationary
and nonstationary cigar beacons are nearly identical.
This result demonstrates that although

atmospheric turbulence affects the Collett–Wolf
beacon characteristics (shape and brightness), these
changes have little effect on SA phase. This suggests
that for numerical analysis of SA PC compensation
efficiency, the Collett–Wolf beacon that is created
by outgoing beam steering can be substituted by a
stationary Collett–Wolf beacon with approximately
equivalent characteristics. Because direct numerical
modeling of outgoing beam steering is extremely
computationally expensive, this replacement leads
to a significant reduction in computational time.

C. Beacon Anisoplanatism

Assume that the square Collett–Wolf beacon is cre-
ated by hit-spot scanning inside a square of size
bsq at the target plane. The important practical ques-
tion to answer is: how does the beam steering ampli-
tude bsq that defines the Collett–Wolf beacon size
affect SA PC precompensation efficiency? Based on
the analysis in Section 4.B, we can avoid time-
consuming numerical simulations related to propa-
gation of the steering outgoing laser beam by
substituting the nonstationary beacon with a corre-
sponding stationary Collett–Wolf square beacon of
size nearly equal to bsq. In the numerical simula-

tions, we used the stationary square beacon defined
by Eq. (30).

For analysis of SA PC precompensation efficiency,
we consider the atmospheric-average metrics hStiat
and hJ2iat obtained using different-size square bea-
cons. In the numerical simulations, for each fixed
value of the beacon size bsq, the calculations were
performed using 20 different realizations of the
phase screens and the obtained instantaneous me-
trics values St and J2 were averaged.

The dependences hStðbsqÞiat and hJ2ðbsqÞiat are
shown in Fig. 4 for two different values of the
D=r0 ratio. The decline in SA PC compensation effi-
ciency (decrease in hStiat and hJ2iat with the increase
of the beacon size bsq is related to the beacon
anisoplanatism—the propagation conditions for
which phase aberration components associated with
spherical waves originating from different points of
the beacon are uncorrelated and hence cannot be
compensated using a single wavefront corrector
[8,9,37].

For the beacon with threshold size bsq ¼ bth, the
metrics values obtained with SA PC compensation
are equal to the corresponding values (hStf iat and
hJf

2iat in Fig. 4) for an initially focused beam with
quadratic phase uðrÞ ¼ uqðrÞ ¼ kr=ð2LÞ. SA PC con-
trol results in improvement of beam projection effi-
ciency only for a beacon whose size is less than
bth. The threshold value bth depends on the turbu-
lence strength as measured by the D=r0 ratio and de-
creases asD=r0 increases. For example, for the Strehl
ratio in Figs. 4(a) and 4(b), the beacon size bth ≃
7:4bdif for D=r0 ¼ 5 and bth ≃ 6:8bdif for D=r0 ¼ 8.
Note that for bsq > bth, the metric values achieved
with SA PC precompensation are smaller than with-
out compensation. This effect can be associated with
the negative correlation (decorrelation) between the
compensated and residual phase aberrations. This
decorrelation vanishes with a further increase of
the beacon size.

The numerical analysis shows that the threshold
value bth is only weakly dependent on the Collett–
Wolf beacon shape and is nearly equal for all beacons
examined (the Airy and cigar beacons). This suggests
that the decline in the metrics values in Fig. 4 is re-
lated to the anisoplanatic effect.

To link directly the beacon size bsq with a charac-
teristic anisoplanatic patch length lis, consider a
small-size (unresolved) reference light source located
in the coordinate origin of the target plane (on-axis
coherent beacon). In the numerical simulations, this
beacon was defined by the boundary condition (30),
with ξðrÞ ¼ 0 and ITðrÞ ¼ I0T expð−r2=b2ref Þ, where
bref ¼ 0:25 bdif is the beacon width. Instantaneous
phase φref ðrÞ of an optical wave originating from this
reference beacon was calculated by integrating the
propagation equation (21) from the target to the
transceiver plane.

The conjugated phase −φref ðrÞ was used for atmo-
spheric turbulence precompensation of the outgoing
beam. Anisoplanatic propagation conditions similar

Fig. 3. Speckle-average phase conjugation using the Collett–Wolf
beacon created by a small amplitude steering of the outgoing
beam. The Collett–Wolf beacon intensity (brightness) pattern in
(a) is obtained for the beam steering along the vertical line of
length bcg ¼ 4 bdif . This beacon is used for calculation of the SA
phaseΦðrÞ in (b). The target-plane intensity ITðrÞ in (c) is obtained
using conjugation of phase ΦðrÞ. The propagation conditions
(phase screens and distance L) are identical in Fig. 1.
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to the extended Collett–Wolf beacon are created by
considering off-axis propagation of the PC precom-
pensated outgoing beam with the following phase:

uðrÞ ¼ −φref ðrÞ þ utiltðrÞ; ð35Þ

where utiltðrÞ ¼ kðl=LÞx is the wavefront tilt compo-
nent that results in beam centroid displacement in
vacuum at distance l. Wavefront phase (35) corre-
sponds to off-axis propagation of the outgoing beam
with precompensation based on conjugation of phase
φref ðrÞ obtained for an on-axis unresolved beacon.
In the numerical simulations, for adequate com-

parison of SA PC precompensation based on the
square Collett–Wolf and reference beacons, the same
set of phase screens was used.
The obtained dependences of metrics hStiat and

hJ2iat on the normalized displacement distance
l=bdif are compared in Fig. 4 with the corresponding
dependences for the square Collett–Wolf beacon.
Note that the displacement distance l=bdif can be di-
rectly associated with the normalized size bsq=bdif of
the Collett–Wolf beacon.
The strength of anisoplanatism can be evaluated

using expð−1Þ fall off in metric hStiat as illustrated
in Fig. 4(a). The corresponding value of the displace-

ment l defines the isoplanatic patch length lis (isopla-
natic distance). As seen in Figs. 4(a) and 4(b), the
isoplanatic distance lis ≃ 4:2bdif for D=r0 ¼ 5 and
lis ≃ 2:9bdif for D=r0 ¼ 8. Note that the obtained iso-
planatic distances lis are noticeably larger compared
with the corresponding distances l̂is calculated based
on the commonly used expression l̂is ¼ 0:57 r0 that is
derived from the analysis of the correlation between
the on- and off-axis phase aberrations [29,37–39].

Note that the dependences hStðlÞiat and hJ2ðlÞiat
obtained for an unresolved reference beacon
and the corresponding dependences hStðbsqÞiat and
hJ2ðbsqÞiat for the square Collett–Wolf beacon nearly
coincide. This indicates that the decline in SA PC
precompensation efficiency with the increase of the
Collett–Wolf beacon size is directly related to the
beacon anisoplanatism.

The negative impact of anisoplanatism can be de-
creased with the use of a small-size Collett–Wolf
beacon by decreasing the beam scanning amplitude.
Nevertheless, since the SA phase should be
measured using a large number of statistically inde-
pendent speckle-field realizations, the scanning
amplitude decrease has a certain limitation. The
scanning amplitude lower limit is quite difficult to
estimate from numerical simulations. In Section 4

Fig. 4. Impact of anisoplanatism on the outgoing beamprecompensation efficiency using a square Collett–Wolf for SA PC (lines with dots)
and an unresolved coherent Gaussian beacon for PC (solid lines) control for D=r0 ¼ 5 (a), (b) and D=r0 ¼ 8 (c), (d). Atmospheric-average
metrics hStiat in (a), (c) and hJ2i in (b), (d) are shown as functions of the beacon size bsq for the SA PC precompensation and displacement l
(distance between the location of the unresolved beacon and the outgoing beam aim point at the target plane) for the PC control. The
horizontal lines correspond to the outgoing beam that is focused on the target. The threshold beacon size bth, the isoplanatic distance lis
that is defined by the e−1 fall-off of the Strehl ratio, and l̂is ¼ 0:57 r0 are normalized on the diffraction-limited beam radius bdif (Airy radius)
for the flat-top beam of radius a0 in vacuum. The propagation conditions (phase screens and distance L) are identical in Fig. 1.
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this estimation is performed using bench-top experi-
ments with a SA PC control system. The experimen-
tal results demonstrate that SA PC precompensation
can be efficient even if the Collett–Wolf beacon size is
nearly equal or even less than the diffraction-limited
beam size.

D. SA PC Control for Rapidly Moving Lambertian Surface

Consider SA PC control of the outgoing beam for a
target with a fast moving Lambertian surface so
that the speckle-averaging condition (2) is satisfied
without beam steering. A nonstationary Collett–Wolf
beacon is then defined by the intensity distribution
at the target surface. The SA PC precompensation
then results in an iterative sequence of wavefront
phase uðr; tnÞ updates at time t ¼ tn ¼ nΔt, where
n ¼ 1; 2::; is the iteration number, and Δt ¼ τAO is
the time delay between subsequent SA PC iterations.
Assume that optical inhomogeneities can be consid-
ered as frozen during the first NPC SA PC iterations
so that NPCΔt < τat. For the complex amplitude of
the outgoing beam at the SA PC nþ 1st iteration,
we have

Aðr; z ¼ 0; tnþ1Þ ¼ A0ðrÞ exp½−iΦðr; tnÞ�; ð36Þ

where Φðr; tnÞ is the SA phase at the nth iteration.
In the numerical analysis, the cycle (adaptation

trial) of NPC ¼ 10 SA PC iterations (36) was per-
formed for a fixed set of phase screens. Dynamics
of the SA PC precompensation process during the
adaptation trial are characterized by the depen-
dences StðnÞ and J2ðnÞ referred to here as the adap-
tation curves.
The adaptation trials were repeated a number of

times with a different set of phase screens to
obtain atmospheric-average SA PC adaptation
curves hStðnÞiat and hJ2ðnÞiat. The adaptation curves
corresponding to the atmospheric-average metric
hJ2ðnÞiat are presented in Fig. 5 for both initially col-
limated (solid lines) and focused (dotted lines) beams
and different D=r0 values. The averaging is per-
formed over a set ofM ¼ 50 statistically independent
atmospheric phase-distorting layers.
The adaptation curves in Fig. 5 show that SA PC

precompensation results in a noticeable increase in
the target-plane metric hJ2iat. A major contribution
to this increase in the metric for the collimated beam
comes from compensation of the initial beam diver-
gence. For an initially focused beam, the increase
in metric hJ2iat is solely due to compensation of
the turbulence-induced phase aberrations. The com-
pensation gain as measured by the ratio gðnÞ ¼
hJ2ðnÞiat=hJ2ðn ¼ 0Þiat increases with D=ro and for
an initially focused beam reaches its maximum value
gðn ¼ 20Þ ≅ 2:5 for D=r0 ¼ 4:0. With a further in-
crease in turbulence strength, the efficiency of SA
PC precompensation gradually drops.
The pictures of the target-plane intensity distribu-

tions in Figs. 5(a) through 5(d) show that phase SA
PC precompensation can significantly increase the

target hit-spot brightness in the conditions that con-
ventional PC and FC beam control techniques fail—
laser beam projection through a distributed phase-
distorting medium onto an extended moving (spin-
ning) target or in the presence of strong beam jitter.

5. Adaptive Control with Collett–Wolf Beacon:
Experimental Results

A. Experimental Setup

In this section we describe the results of the proof-
of-concept bench-top experiments with an adaptive
wavefront control system based on a Collett–Wolf
beacon. In the system schematic in Fig. 6 the argon
(λp ¼ 0:53 μm) and He–Ne (λb ¼ 0:63 μm) lasers are
used as the coherent light sources for the projected
and beacon beams, respectively.

The system optimizes the power density (hit-spot
brightness) of the projected laser beam on an ex-
tended target with a randomly rough surface using
conjugation of the SA phase. The SA phase is recon-
structed from the SA wavefront slopes measured
with a conventional SH wavefront sensor (CLAS-
2D from Wavefront Sciences Inc.). The Collett–Wolf
beacon used for measurements of the SA slopes is
created by steering (scanning) the auxiliary laser
beam (beacon beam). For beam steering, the harmo-
nic signals (control voltages) alternating with fre-
quency f ∼ 800Hz are applied to the actuators of

Fig. 5. Efficiency of phase control based on SA PC control for la-
ser beam projection onto an extended target with rapidly moving
Lambertian surface. Dependence of the atmospheric-average tar-
get-plane metric hJ2iat on SA PC iteration number n for different
D=r0: solid lines—initial plane phase uðr;0Þ ¼ 0; dotted lines—fo-
cused beam with uðr; 0Þ ¼ uqðrÞ ¼ kr2=ð2LÞ. The propagation dis-
tance is L ¼ 0:2ka20, where a0 is the outgoing flat-top beam radius.
Phase distortions are modeled by N ¼ 20 equidistant Kolmogorov
phase screens. Gray-scale images correspond to target-plane in-
tensity distributions: (a) and (b) prior to compensation for
D=r0 ¼ 6:0; (a) with uðr; 0Þ ¼ 0 and (b) with uðr;0Þ ¼ uqðrÞ; (c)
and (d) SA PC for n ¼ 5, (c) for D=r0 ¼ 6:0 and (d) for D=r0 ¼ 0:2.
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the tip/tilt (beam steering) mirror. The beam steering
results in fast displacement of the beacon laser hit
spot within a target region (Collett–Wolf beacon re-
gion) of size bscan. The hit-spot scanning amplitude
bscan (on the order of bdif < bscan < 10 bdif , where
bdif ≃ 25 μm and velocity of its centroid displacement
vT (on the order of 5 − 10 cm=s) are controlled by
changing the amplitude of the applied control vol-
tages. The Collett–Wolf beacon and the hit spot of
the nonscanning beam projected onto the target
are overlapped as shown in Fig. 6(g).
In the optical system schematic in Fig. 6, the input

beacon laser beam (diameter 10mm) is first reflected
from the tip/tilt (beam steering) mirror and then is
combined with the projected laser beam. The optical
relay system (lenses L1 and L2) expands both beams
up to 25mm in diameter. The expanded beams are
reflected from the deformable mirror (DM) located
in the image plane of the tip/tilt mirror and are fo-
cused by the off-axis parabolic mirror (focal distance
38 cm) onto an extended target (flat end of an alumi-
num cylinder), which is shown in Fig. 6(a). A small
portion of the focused beams is redirected by the
beam splitter BS1 to the camera (CCD1) located at
the plane conjugated to the target surface. The
speckle fields that scatter off the target propagate
back and, after reflection from the DM and the beam
splitter BS2, enter the receiver system. The receiver
system is composed of the imaging lens L3 with the
camera (CCD2), which images the target surface
through the DM, the optical relay system (lenses

L4 and L5), and the Shack–Hartmann wavefront sen-
sor (SH WFS). The pupil plane of the wavefront sen-
sor is located in the conjugate plane for both the
deformable and tip/tilt mirrors. The integration time
of the SHWFS photoreceiver (τph ¼ 128 μs) is set suf-
ficiently longer than the characteristic time of
speckle-field realization update (τs ¼ bscan=vT∼
1:0ms), so that the SH WFS measures the speckle-
averaged wavefront slopes of the scanning beacon
beam. The SH WFS used in the experiments had a
lenslet array composed of 68 × 68 lenslets with focal
length 4:6mm.

The bandpass optical filters located in front of the
target imaging camera (CCD1), imaging lens L3, and
optical relay system (L4 and L5) allow analysis of the
outgoing or return waves originating from either the
beacon or projected laser beams or from both simul-
taneously.

The phase aberrations are introduced into the
system by applying random voltages to all 13 electro-
des of the semi-passive bimorph-type continuously
DM. The geometry of the DM electrodes is shown
in Fig. 6(b). The example of the target-plane inten-
sity distribution (hit-spot intensity pattern) of the
projected laser beam corresponding to the random
applied voltages in Fig. 6(c) is compared with the cor-
responding intensity pattern in Fig. 6(d) for the com-
pensated beam.

The characteristic patterns of the Collett–Wolf
beacons used in the experiments are shown in
Figs. 6(e) and 6(g). The cigar [Fig. 6(e)] and square

Fig. 6. Schematic of the bench-top adaptive optical system for laser beam projection on an extended target based on SA PC feedback
control. Insets are image of the target (a), geometry of the deformable mirror (DM) electrodes (b), target-plane intensity of the projected
beam without (c) and without (d) adaptive compensation of a random phase aberrations, the long-exposure intensity distribution of the
beacon beam with one (e) and two-dimensional (f) scanning, and the projected beam (bright spot in the middle) inside the square Collett–
Wolf beacon created by two-dimensional scanning of the beacon laser beam (g). The images in (c)—(g) correspond to a 110 × 110 μm area.
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[Fig. 6(f)] patterns of the beacon beam are obtained
with the target imaging camera (CCD1) and the
bandpass filter that cuts off the light from the argon
laser (projected laser beam). The corresponding im-
age with the filter removed in Fig. 6(g) shows the
square Collett–Wolf beacon with the hit spot of the
projected beam in the center of the beacon. The cam-
era integration time is τph ¼ 30ms.

B. Instantaneous and SA Phase Measurements

The random phase aberrations that are introduced
by the DM result in the corresponding changes in
both the outgoing and return waves. The character-
istic examples of the return speckle-field intensity
and phase distributions of the projected beam are
shown in Figs. 7(a) and 7(b). Both patterns are ob-
tained using the SH wavefront sensor with the band-
pass filter that blocks the light from the beacon laser.
The strong spatial modulation in the intensity pat-
tern seen in Fig. 7(a) results in significant errors
in the reconstructed phase shown by the set of ran-
dom black regions in Fig. 7(b).
For the SA phase measurements, the bandpass fil-

ter was replaced by a filter that only passes the scat-
tered light originating from the scanning beacon
beam. In this case, due to a relatively long integra-
tion time, the SHwavefront sensor camera measured
the SA slopes. Two examples of the SA phase that is
reconstructed from the speckle-averaged slopes are
shown in Figs. 7(c) and 7(d). These SA phase patterns
are obtained using identical random phase aberra-
tions but different Collett–Wolf beacons [cigar and
square Collett–Wolf beacons shown in Figs. 6(e)
and 6(f)]. Contrary to the instantaneous phase in

Fig. 7(b), the SA phase patterns obtained for the Col-
lett–Wolf beacons are nearly identical.

C. Adaptive Control Based on a Beam Scanning-Induced
Beacon

Consider the experimental results of adaptive pre-
compensation of static random phase aberrations
using PC and SA PC algorithms. In the experiments,
a set ofNab ¼ 20 different realizations of random vol-
tages were sequentially applied to the DM electrodes
to create statistically independent phase aberration
realizations. Compensation of each aberration was
performed using either PC or SA PC adaptation
trials, each composed of NPC ¼ 10 iterations.

For PC control, the return wave corresponding to
the projected beam that scatters off the target was
used as the input for the SHWFS. The reconstructed
phase φnðrÞ at the nth iteration ðn ¼ 1;…; NPCÞ was
used to calculate the coefficients fcðnÞj gðj ¼ 1;…; 13Þ
of phase φnðrÞ deconvolution over the DM response
functions fSjðrÞg. The response functions were preli-
minarily measured using a Zygo interferometer. The
coefficients fcðnÞj g were used for the control voltage
update in the form uðnþ1Þ

j ¼ uðnÞ
j − cðnÞj , (ðj ¼ 1;…;

13Þ, where fuðnÞ
j g are the control voltages at the

DM electrodes at the nth iteration. The iterative up-
date of the control voltages resulted in the corre-
sponding change in the target-plane intensity
distribution of the projected beam as registered by
the target-plane camera (CCD1 in Fig. 6). During
each adaptation trial, precompensation efficiency
was estimated by the Strehl ratio St. The depen-
dences StðnÞ, n ¼ 1;…;NPC obtained for Nab ¼ 20
different phase aberrations were averaged. The cor-
responding averaged adaptation curve hStðnÞi for PC
wavefront control is shown in Fig. 8. Note that the
average value of the Strehl ratio achieved after
NPC PC iterations is relatively low ½hStðNPCÞi∼ 0:45�.
At the same time, the level of the Strehl ratio fluctua-
tions, as characterized by standard deviation and
shown in Fig. 8 by vertical bars, is large (∼45%).

Consider now the corresponding results obtained
using the SA PC control algorithm. For phase distor-
tion generation, a set of identical random control vol-
tages was used for both PC and SA PC control. The
square Collett–Wolf beacon of size bsq ≅ 4 bdif was
created by the two-dimensional steering of the bea-
con beam. This Collett–Wolf beacon was used for
measurements of the SA slopes and reconstruction
of the SA phase functions fΦnðrÞgðn ¼ 1;…; NPCÞ
at each iteration of the SA PC precompensation trial.

Similarly to the PC-based precompensation, the
controls fcðnÞj g at the nth iteration were obtained
by deconvolution of the SA phase ΦnðrÞ over the
wavefront corrector response functions fSjðrÞg. In
Fig. 8 the dependence of the Strehl ratio on the itera-
tion number hStðnÞi for SA PC phase aberration com-
pensation is compared with the corresponding
dependence for PC control. The averaging is per-
formed over Nab ¼ 20 adaptation trials. Note that
both PC and SA PC adaptation curves in this figure

Fig. 7. Impact of phase aberration on the return speckle-field in-
tensity (a) and instantaneous phase (b) for the projected beam, and
on the SA phase (c), (d) obtained for the beacon beam with one- (c)
and two-dimensional (d) scanning.
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correspond to the Strehl ratio for the projected beam,
although the SA phase wasmeasured using the scan-
ning beacon beam. An example of the target-plane
intensity distribution (hit-spot intensity) obtained
at the end of the SA PC adaptation trial is shown
in Fig. 6(d). The presented data clearly demonstrate
the advantage of the SA PC-based precompensation
technique. The averaged Strehl ratio value achieved
using SA PC control (hStðNPCÞi∼ 0:82) is nearly
twice as high as that achieved with the PC control
algorithm. Note that the residual uncompensated
phase error is mostly related to the presence of
high-order aberrations that cannot be compensated
with the DM used.
The standard deviation of the Strehl ratio fluctua-

tions is significantly smaller for SA PC than for the
conventional PC control algorithm (compare vertical
bars for the curves in Fig. 8).
The performance of SA PC control (average Strehl

ratio hStðNPCÞi) remained practically unchanged
within a wide range of beacon beam scanning ampli-
tudes (bdif ≤ bscan ≤ 8bdif ) and began to decrease gra-
dually as scanning (either one- or two-dimensional)
amplitude decreased beyond bdif and above 8 bdif−
10 bdif . Note that since phase aberrations are in-
duced and compensated using the DM located in
the beam projection system pupil plane, the propaga-
tion path of the projected beam, including the beacon
generated by beam steering, is isoplanatic. For this
reason, the decrease in the average Strehl ratio
hSti for large scanning amplitudes (bscan > 8 bdif ) ob-
served in the experiments is related to additional
phase aberrations caused by off-axis propagation of
the scanning beacon beam through the system opti-
cal train.

6. Conclusion

In this paper, we consider an adaptive laser beam
projection system that uses a new type of reference
light source (beacon) for wavefront measurements
and atmospheric turbulence effects compensation.
This reference source—identified here as the
Collett–Wolf beacon—is artificially created directly
at the extended target with a randomly rough sur-
face using a rapid steering (scanning) auxiliary (bea-
con) laser beam. Steering of the beacon beam leads to
rapid displacement of the laser beam hit spot inside a
small region of the target that defines the Collett–
Wolf beacon size, and thus results in the rapid up-
date of the scattered off the target surface return
speckle-field realizations inside the wavefront sensor
receiver aperture. The wavefront sensor (Shack–
Hartmann sensor) measures wavefront slopes of the
return field that are averaged over a large number of
speckle-field realizations. We assume that this
speckle averaging can be performed over a relatively
short time so that the atmospheric turbulence-
induced optical inhomogeneities can be considered
as frozen (speckle-averaging condition). It is shown
that the function that is computed from the SA slopes
using conventional phase reconstruction techniques,
referred to here as the SA phase, can be directly uti-
lized for phase-conjugate type precompensation of
the outgoing beam phase. The numerical simulations
show that the Collett–Wolf beacon-based adaptive
optics technique can potentially provide efficient
compensation of turbulence effects, resulting in an
increase of the projected laser beam power density
on a remote extended target in volume turbulence.

Scanning of the laser beam projected onto the tar-
get results in partial averaging of the atmospheric
turbulence-induced phase distortions within the pro-
pagation medium volume of the beacon beam, lead-
ing to the decline of compensation efficiency. As we
show, this effect is directly associated with anisopla-
natism. Nevertheless, since the Collett–Wolf beacon
is located directly at the target surface, the Collett–
Wolf beacon-based AO approach does not suffer from
conical anisoplanatisms as does the laser guide-star
AO technique. Besides the Collett–Wolf beacon can
be in principle created at any target independently
of its elevation angle and height above the ground.

Similarly to the laser guide-star technique, the
wavefront measurements with the Collett–Wolf bea-
con cannot provide absolute wavefront tilt informa-
tion and hence cannot stabilize the hit spot of the
projected beam at the target surface.
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are grateful to A. Kohnle for helpful discussions
and K. Aschenbach for technical support.

Fig. 8. Dependence of the averaged Strehl ratio hSti on the itera-
tion number n obtained in the phase distortion compensation ex-
periments with PC and SA PC feedback control of wavefront phase
for the laser beam projected onto an extended stationary target in
Fig. 6(a). Phase distortions are created by applying random vol-
tages to the deformable mirror (DM) electrodes. Averaging is per-
formed using a set of 20 different phase aberration patterns. Two-
dimensional scanning of the beacon was used to generate the
square Collett–Wolf beacon shown in Fig. 6(g). The length of ver-
tical bars indicates the standard deviation in the Strehl ratio.
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