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Control methods and system architectures that can be used for locking in phase of multiple laser beams that
are generated at the transmitter aperture plane of a coherent fiber-collimator array system (pupil-plane phase
locking) are considered. In the proposed and analyzed phase-locking techniques, sensing of the piston phase
differences is performed using interference of periphery (tail) sections of the laser beams prior to their clipping
by the fiber-collimator transmitter apertures. This obscuration-free sensing technique eliminates the need for
a beam splitter being directly located inside the optical train of the transmitted beams—one of the major draw-
backs of large-aperture and/or high-power fiber-array systems. Numerical simulation results demonstrate ef-
ficiency of the proposed phase-locking methods. © 2010 Optical Society of America
OCIS codes: 010.1080, 010.7350, 140.3290, 140.3298, 140.3510, 220.0220.
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. INTRODUCTION
here has been a growing interest in development of long-
ange laser beam transmitter systems with sparse (con-
ormal) aperture, also referred to as conformal beam di-
ector, which are composed of an array of small-size
ensely packed fiber collimators, as illustrated in Fig. 1(a)
1,2]. This interest is stimulated in part by an underlying
resumption that the conformal beam directors can po-
entially replace conventional bulky and expensive optical
ransmitters based on large-aperture beam-forming tele-
copes. With a fiber-array laser transmitter, basic opera-
ion functions of laser beam projection systems such as
eam pointing, target tracking, and adaptive mitigation
f the propagation-medium-induced phase aberrations
an potentially be directly integrated onto the fiber-
ollimator array and performed electronically [3].

In the conformal laser beam transmitter system in Fig.
(a) the emitted outgoing laser beams (beamlets) are
riginated at the fiber tips located at fiber-collimator lens
oci. The laser energy is delivered into these fiber tips
rom a multichannel master oscillator power amplifier
MOPA) system. The MOPA system is composed of an ar-
ay of fiber amplifiers coupled to either a single seed laser
s in Fig. 1(a) or to an array of independent laser sources
4,5].

In both fiber-array system types the optical path differ-
nces between the outgoing beamlets at the system out-
ut (pupil) plane are randomly changing, which leads to a
orresponding random variation of the outgoing beamlet
perture-averaged phases, also known as piston phases,
r phase shifts. Projection (focusing) of a conformal laser
eam composed of an array of beamlets with random pis-
on phases leads to their incoherent overlapping (combin-
1084-7529/10/11A106-16/$15.00 © 2
ng) at the target plane—target-plane incoherent beam
ombining [6,7].

With optimal pointing of beamlets in vacuum resulting
n their perfect overlapping, the characteristic size (diam-
ter) bT of the illuminated area at the target plane (target
it-spot size) depends inversely on the fiber-collimator ap-
rture diameter d. Correspondingly, the major beam pro-
ection performance measure—power density inside the
arget hit-spot (hit-spot brightness)—is then proportional
o the product Nsubp0d2 of the following three parameters:
he number of fiber-array system subapertures Nsub
number of fiber collimators), the output power emitted
hrough a single fiber collimator p0 (power per fiber), and
he subaperture diameter d. From this simplified consid-
ration follows that the increase of the power density at
he target plane desired in many applications is directly
elated to the increase of each of the above factors.

The increase in power-per-fiber parameter p0 is typi-
ally limited by the nonlinear stimulated Brillion scatter-
ng (SBS) effect that accompanies high-energy laser beam
ropagation in a fiber [8] and the laser-induced damage
hreshold of fiber tips [9]. On the other hand, the increase
f the number of subapertures Nsub and/or the fiber-
ollimator diameter d leads to a bulky transmitter aper-
ure with limited capabilities for the outgoing conformal
eam steering and pointing [10].
In principle, the target hit-spot power density can be

ncreased using pupil-plane incoherent beam combining
4,5,11,12]. In this approach the outgoing beamlets are
rst combined into a single beam of diameter dc�d, and
he combined beam is then expanded to a larger beam of
iameter D�dc using a conventional beam director sys-
em as shown in Fig. 1(b). The pupil-plane incoherent
010 Optical Society of America
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eam combining can potentially lead to a target hit-spot
rightness increase by a factor �D /d�2. However, combin-
ng a large number Nsub of beamlets into a single beam
resents a challenging technical task. Besides, this tech-
ique still requires a bulky (for large D) conventional
eam-forming telescope.
In this study we consider an alternative approach in

he development of the fiber-array-based laser beam pro-
ection systems known as a coherent beam combining
1,3,13–21]. In this approach the optical path differences
etween the beamlets transmitted by the fiber array are
ompensated (locked) either at the transmitter aperture
pupil-plane coherent beam combining) or at the target
lane (target-plane coherent beam combining) or in both
lanes.
With ideal phase locking of densely packed beamlets in

acuum, one can potentially achieve beam projection per-
ormance comparable with the performance of a conven-
ional beam director with a monolithic aperture of diam-
ter D [19]. The corresponding aperture can be defined
hen by the smallest circle that contains all subapertures
ithin it, as shown in Fig. 1(a) by the dashed curve.
Thus, phase locking of the outgoing beamlets (either

upil- or target-plane) allows potential achievement of
D /d�2-fold increase of the target hit-spot brightness
ithout increasing the number of fiber collimators Nsub,

ncreasing the power p0 transmitted through a single
ber-collimator, or a need to combine beamlets into a
ingle beam with further aperture expansion. Note that
ith the currently available technologies, phase locking

an be obtained only in fiber-array systems with a single
eed laser [as in Fig. 1(a)] that has sufficiently narrow fre-
uency bandwidth (typically on the order of a few mega-
ertz or less [1,3]. In addition, the entire multichannel fi-
er system (MOPA system) should be able to support
ingle-mode operation and provide identical polarization
tates for all output beamlets.

ig. 1. Notional schematics of laser transmitter (beam director)
ased on (a) sparse (conformal) array of fiber collimators with a
ingle laser source and (b) pupil-plane incoherent combining of
aser beams originating from multiple laser sources.
Note that a single narrow-line laser source and
olarization-maintaining fiber requirements may no
onger be limiting factors in the future. At a low power
evel, phase locking of an array of independent narrow-
ine laser sources has already been demonstrated [22,23].
esides, recent progress in control of polarization states

n fiber systems allows implementation of fiber-array sys-
ems with capabilities for locking of both phases and po-
arization states [24].

In this paper we consider the pupil-plane coherent
eam combining achieved by locking of piston phases
�j�t��, j=1, . . . ,Nsub, originated solely from laser beam
ropagation in a multichannel, single-mode polarization-
aintained fiber system and inside the fiber collimators.
he paper is organized as follows. Section 2 is dedicated

o the review of conventional control techniques that are
sed for locking of piston phases in fiber-collimator array
ystems. A new type of piston phase-sensing method that
ses interference of laser beam tails (two-beam-tail inter-
erence), as well as the corresponding different sensor
etwork architectures, are introduced in Section 3. In this
ection we also analyze several phase-locking control al-
orithms and system architectures. In Section 4 the
nalysis of an array of interconnected feedback circuits is
xtended to include three-beam-tail sensors. Finally, in
ection 5 we introduce the focal-plane beam-tail sensors
nd derive mathematical models of phase-locking control
ystems that account for the diffraction effects and finite
ize of sensors.

. PUPIL-PLANE PHASE LOCKING: BASIC
YSTEM ARCHITECTURES

n the existing pupil-plane coherent beam-combining
phase-locking) systems, a small fraction ��1 of the out-
oing conformal beam with the complex amplitude A�r , t�
s redirected into a phase-locking receiver using either a
ingle beam splitter or an array of beam splitters that are
ocated in front of the outgoing conformal beam, as illus-
rated in Fig. 2(a). Here r= �x ,y� is the coordinate vector
t both the transmitter aperture and the optical receiver
nput planes, and t is the time variable.

The major function of the phase-locking receiver is
ransformation of the outgoing conformal beam with the
omplex amplitude �A�r , t� into an output field Aout�r , t�
ith the intensity distribution Iout�r , t�= �Aout�r , t��2 that
epends on the piston phases of the outgoing beamlets.
The desired transformation is typically achieved by

ombining the outgoing beamlets either with a coherent
eference field Aref�r�, as in Fig. 2(b), or with each other.
he latter arrangement can be easily obtained using a

ens that focuses all the outgoing beamlets into the same
rea of the focal plane, as shown in Fig. 2(c). The overlap-
ing of the beamlets results in their interference. The in-
ensity distribution of the interference pattern
out�r , t�—the receiver output—depends on the piston
hases of the outgoing beamlets and hence can be utilized
s an input signal for a phase-locking control system.
The feedback control loop in pupil-plane phase-locking

ystems can be either optical or electronic. In a phase-
ocking system with optical feedback, the output field

�r , t� is coupled into a fiber tip that is located in the
out
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ocus of the combining beamlets’ lens as shown in Fig.
(c). The optical signal coupled into the fiber is further
plit and after amplification is combined with the laser
eams entering the fiber amplifiers of the MOPA system,
hus forming an array of mutually coupled nonlinear op-
ical feedback circuits. As has been shown, nonlinear dy-

ig. 2. Pupil-plane phase-locking control system basic architec-
ures: (a) notional schematic, (b) phase-locking receiver system
ith a coherent reference wave, and (c) phase-locking receiver
ith focal-plane beam combining. The systems are based on ei-

her electronic or optical feedback loop.
amics of these optical feedback circuits can lead to a self- t
rganized stationary solution corresponding to a phase-
ocked state [25].

In another approach referred to as electronic phase-
ocking control, auxiliary controlling piston phase shifts
uj�t��, j=1, . . . ,Nsub, are injected into each beamlet by us-
ng, for example, phase-shifting elements integrated into
he MOPA system. These phase shifts are used for com-
ensation of the fiber-system-induced phase shifts ��j�t��.
ith the injected controllable phase shifts �uj�t��, the pis-

on phases of the outgoing beamlets ��j�t��= ��j�t�+uj�t��
orrespond to uncompensated or residual piston phase er-
ors, further also referred to as phase errors. Note that
ince piston phases of type ��j�t�±2�m�, where m is an ar-
itrary integer number, result in an identical optical field,
he phase errors can be defined as modulo 2� functions,
hat is, ��j�t��= �mod2���j�t�+uj�t���.

The phase-locking receiver output field is registered by
ither a single photodetector or an array of 1�M�Nsub
hotodetectors—a part of the feedback loop. The obtained
lectronic signals (metrics) �Jl�t��, l=1, . . . ,M, depend on
he uncompensated phase shifts ��j�t��. These signals are
ent to an electronic processor (phase-locking feedback
ontroller) that forms control signals applied to the phase-
hifting elements—typically the lithium niobate �LiNbO3�
lectro-optics phase modulators integrated into each
hannel of the MOPA system [24,26,27].

Compensation of the residual phases (pupil-plane
hase locking) is commonly based on control techniques
idely used in active interferometers (laser vibrometers)
nd adaptive optics, namely, the optical path difference
tabilization, also known as heterodyne, and metric opti-
ization techniques. In its turn, the metric optimization

s performed using either multidithering [28] (also re-
ently referred to as LOCSET [29]) or the stochastic par-
llel gradient descent (SPGD) control techniques
3,30,31].

In the heterodyne phase-locking systems the outgoing
eamlets are optically combined with a reference optical
ave (see, e.g., [17]). An optical beam originated from the

ame MOPA system is commonly used as a reference. The
ntire control system consists then of Nsub independent
nterferometers, as shown in Fig. 3(a).

The output field of each interferometer enters a dia-
hragm (pinhole) with a single photodetector located im-
ediately behind it. The pinhole size does not exceed the

haracteristic size of the interference fringes which is de-
endent on accuracy of angular alignment of the refer-
nce wave and beamlets.

The output signal Jj��j�t�� measured by the photodetec-
or at the jth control channel depends solely on the phase
rror �j�t�. Correspondingly, the phase-locking controller
s composed of an array of Nsub independently operating
dentical control subsystems used for active stabilization
f the interference patterns.

The interference signal Jj��j�t�� can be represented as
he sum of two components: Jj��j�t��=Jj

0�t�+ J̃j�t�, where

j
0�t� is the independent-of-phase-error signal (dc compo-
ent), and J̃j�t�=	j cos �j�t� is the interference term. The
oefficient 0�	j�1 is associated with interference pat-

ern visibility. Electronic signal processing of the regis-
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ered signal in each control channel aims at the extrac-
ion of the solely interference component J̃j�t� (or its
erivative) that is used for compensation of the phase er-
or.

The components �J̃j�t�� can be obtained by injecting a
mall-amplitude sinusoidal signal (dither) with frequency

into either the reference wave or into outgoing beam-
ets. In the latter case the dither signal is superimposed
ith the control signal applied to the corresponding
hase-shifting element of the MOPA system as shown in
ig. 3(a). Using a standard synchronous detection tech-
ique, the signals �J̃j�t�� (or their derivatives) can be elec-
ronically separated. The electronic signal processing in-
ludes multiplication of the measured �Jj� and dither
ignals. The signal components �J̃ �t�� are then separated

ig. 3. Principal schematics of pupil-plane phase-locking optical
ystems based on optical path difference stabilization with (a)
eterodyne signal detection and (b) multidithering control tech-
iques. Here 
, 	, LPF, and PID denote, respectively, dither sig-
al generation, signal summation, low-pass electrical filtering,
nd proportional-integral-derivative control.
j

y low-pass filtering (LPF) of the product, as shown in
ig. 3(a). The obtained signals enter the proportional-

ntegral-derivative (PID) controllers [32]. The dynamic
rocesses in the PID control system ideally lead to sta-
ionary steady states of type �j�t→��=const+2�mj,
here j=1, . . . ,Nsub and �mj� are integers, which corre-

pond to locking of the outgoing-beamlet piston phases.
The major drawback of the phase-locking technique

ased on optical path difference stabilization is related to
echnical difficulties in the design and alignment of the
hase-locking receiver system composed of an array of la-
er interferometers. Such an optical system is quite sen-
itive to various distortions including vibrations, thermal
ffects, and acoustical waves that may lead to parasitic
hase shifts that affect phase-locking system perfor-
ance.
These problems can be overcome in the self-reference-

ype phase-locking receiver shown in Figs. 2(c) and 3(b).
n this system the lens focuses beamlets into a joint focal-
lane area where all of them overlap, forming an inten-
ity pattern that depends on all uncompensated piston
hases [residual phase shifts ��j�t��].
For this receiver system, maximization of the on-axis

ocal-plane intensity value leads to ideal phase locking.
hus, the signal J obtained by measuring the light power

nside a small pinhole located in the lens focus can be
sed as a measure (metric) of phase-locking system
erformance. The measured metric signal
��1�t� , . . . ,�j�t� , . . . ,�Nsub

�t�� is a function of all phase er-
ors. Note that this function has an infinite number of
dentical global maxima corresponding to phase errors
hose values differ by 2� multiplied by an arbitrary in-

eger number. Phase locking can then be considered as a
rocess of metric J maximization performed using one or
nother optimization technique known in adaptive optics
multidithering, gradient descent, SPGD, etc.).

As an example, consider the phase-locking controller
ased on the multidithering technique, as shown in Fig.
(b). Each channel of this control system is similar to the
eterodyne phase-locking controller in Fig. 3(a). The im-
ortant difference is that small perturbations of phase
hifts (dithering signals) a sin�
jt� in this system have
ifferent frequencies 
j, where a is the dither amplitude
nd j=1, . . . ,Nsub. Input signal (metric J) is multiplied in
ach control channel by the corresponding dither signal.
he low-pass filtering of the products allows extraction of

he gradient projections �Jj��= ��J /�uj� of the metric J. The
btained metric gradient components �Jj�� are used as the
rror signals in the continuous-time gradient descent con-
roller [33]:

�
duj�t�

dt
= 
j Jj���1�t�, . . . ,�j�t�, . . . ,�Nsub

�t��

�j = 1, . . . ,Nsub�. �1�

ere � is the characteristic response time of the control
ystem and �
j� are the feedback gain coefficients. The dy-
amical process (1) leads to optimization of the metric sig-
al (maximization of the power inside a pinhole) and, cor-
espondingly, locking of the piston phases. The control
ethod associated with the dynamical process (1) is also
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nown as the gradient-flow optimization technique
34,35].

Consider briefly a phase-locking system based on
PGD feedback control [3,30]. Note that the phase-

ocking receivers in the SPGD and multidithering sys-
ems are identical, while the operation principle is quite
ifferent. In the SPGD control system, optimization of
etric J is performed using an iterative process. At each
th iteration of this process the controllable piston phases
f the outgoing beamlets �uj

�n�� are simultaneously per-
urbed using a set of small-amplitude random phase
hifts (perturbations) ��uj

�n��. The perturbation of the pis-
on phases results in the corresponding variation �J�n� of
he measured metric signal. The piston phases at the �n
1�th iteration, �uj

�n+1��, are then computed using the fol-
owing simple rule [30]:

uj
�n+1� = uj

�n� + 
�n��J�n��uj
�n� �j = 1, . . . ,Nsub�, �2�

here 
�n� is the gain coefficient at the nth iteration. It
an be shown that with an appropriate choice of the per-
urbation amplitudes and gain coefficients, the iterative
rocess (2) leads to metric J maximization [31].
Both multidithering and SPGD techniques require fast

high operational frequency bandwidth) phase-shifting el-
ments. In the multidithering phase-locking systems,
igh-frequency bandwidth of phase-shifting elements is
equired for obtaining sufficiently wide separation be-
ween the dithering frequencies �
j�, which is necessary
or prevention of strong cross-coupling between the con-
rol channels leading to a decrease in signal-to-noise ratio
n the gradient projection measurements [28].

In its turn in the SPGD phase-locking technique, the
ast operational speed of phase-shifting elements allows a
igh iteration rate and, correspondingly, an increase in
he control system bandwidth. Fortunately, the existing
ber-integrated phase-shifting elements are sufficiently
ast (� MHz bandwidth) and hence can provide efficient
ompensation of relatively slowly varying phase shifts
�j�t�� (typically on the order of 101–103 Hz) that are
aused by temperature fluctuations and/or vibrations and
echanical deformation of fiber elements in the MOPA

ystem.
Perhaps the most serious drawback of the existing

upil-plane phase-locking systems is the presence of a
eam splitter (or a beam splitter array) located in front of
he outgoing conformal beam, as shown in Figs. 2 and 3.
his beam splitter is part of the phase-locking receiver
ystem used for sampling of piston phases of the outgoing
eamlets. For large-aperture fiber-array beam directors,
his receiver system type is quite difficult to implement in
ractice since the diameter of a monolithic beam splitter
hould exceed the overall diameter D of the entire fiber
rray that would require the use of a bulky and expensive
ptical element. Such a beam splitter also causes a lateral
hift of the conformal laser beam and can potentially re-
ult in additional phase aberrations, especially for high-
ower systems.
The replacement of a monolithic beam splitter with a

eam splitter array does not solve the problem since each
lement of this array needs to be mounted onto a separate
older with tip–tilt alignment capabilities. This makes
he dense packaging of these beam splitting elements re-
uired for high-fill-factor fiber-array systems difficult.

. OBSCURATION-FREE PHASE LOCKING
ITH TWO-TAIL SENSORS

. Piston Phase Sensing Based on Interference of Two
eam Tails
n this paper we introduce another approach for sampling
f piston phases that does not require splitting of the out-
oing conformal beam with a pupil-plane beam splitter.
irst, note that each lens in the fiber-collimator array in
ig. 1(b) clips a central region of the beam exiting the cor-
esponding fiber tip. The optical field energy located in
he tail region of this beam (on the order of 8%–10% of the
ransmitted laser beam energy [3,19]) is absorbed by op-
ical and mechanical elements of the fiber-collimator ar-
ay and commonly results in undesirable phase aberra-
ions caused by the heat-induced thermal deformation of
ptical and mechanical elements and air convection inside
he fiber collimators. In this section we show that the op-
ical field belonging to these beam-tail regions can be uti-
ized for sensing of piston phases of the outgoing beam-
ets.

To illustrate the basic principle of piston phase sensing
sing truncated (tail) regions of the beams generated in-
ide the fiber-collimator array, consider two neighboring
ber collimators that are denoted as A1 and A2 in Fig.
(a). The tail regions of the corresponding beams overlap
nside a volume region �. This overlapping leads to inter-
erence of the corresponding optical fields, which is re-
erred to here as two-beam-tail or just two-tail interfer-
nce, to be short.

Consider a plane inside �, which is orthogonal to the
irection oz of laser beam propagation (direction of the op-
ical axis) and located a distance f0 from the fiber tips (or
distance l0= f− f0 from the fiber-array pupil plane). The

ntensity distribution in this plane depends on the phase
rrors �1�t� and �2�t� of the interfering beam tails as well
s on the fiber-array characteristics such as beam diver-
ence, propagation distance f0, and the offset distance l
etween the neighboring fiber collimators.
Consider a small-size photodetector at the selected

lane S inside �, as shown in Fig. 4(a). We assume that
he photodetector size does not exceed the characteristic
idth w of interference fringes (point-size photodetector).
he signal (metric) J1,2�t� registered by the photodetector

s then given by

J1,2�t� = J1,2��1�t�,�2�t��

= I1 + I2 + 2
I1I2cos��2�t� − �1�t� + �1,2�, �3�

here I1 and I2 are the intensity values of optical fields
orresponding to the fiber collimators A1 and A2 at the
hotodetector, and �1,2 is the static phase term dependent
n the photodetector position at the registration plane.
hus, the difference between the piston phases of two
eighboring subapertures can be sensed using a single
hotodetector located in the area of beam-tail overlap-
ing. We assume for simplicity that the photodetector can
e placed at a point corresponding to � =2�m, where m
1,2
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s an arbitrary integer number, so we can omit �1,2 there-
fter.
The major advantage of the described sensing tech-

ique, referred to here as obscuration-free piston phase
ensing, is the absence of a beam splitter. Sensing of pis-
on phases is obtained here without any additional optical
lement by simply installing a set of photodetectors that
re located outside the outgoing beamlets.

. Fiber-Array Cluster
onsider now the subaperture A1 as a reference and se-

ect a set of N0−1 neighboring the reference subapertures
2, . . . ,Aj , . . . ,AN0

, where N0�Nsub, as shown in Fig. 4(b).
he reference and the neighboring fiber collimators (sub-
pertures) are referred to here as a cluster (cluster A). As-
ume that a set of point-size photodetectors are located
nside the overlapping regions of the beam tails corre-
ponding to the reference and neighboring subapertures
f the cluster, as illustrated in Fig. 4(b). For the consid-
red case of two-tail sensing, the number of photodetec-
ors M coincides with the number of neighboring subap-
rtures N0−1. Analogously to expression (3), the metric
egistered by the jth photodetector,




ig. 4. Sensing of piston phases using interference of tail sectio
ustration of two-tail interference, (b) fiber-array system compose
ensing of piston phases in a cluster A composed of seven fiber c
gonal clusters using two-tail interference sensors. Black square
J1,j�t� = J1,j��1�t�,�j�t�� = I1 + Ij + 2 I1Ij cos��j�t� − �1�t��
�j = 2, . . . ,N0�, �4�

epends solely on the differences �j�t�−�1�t� between the
iston phases �j�t� and �1�t�. In Eq. (4), Ij describes the in-
ensity of the optical field component associated with the
th subaperture. For simplicity we ignore here the contri-
utions to the metric signal J1,j�t� from the beam tails be-
onging to remote subapertures, assuming that these con-
ributions are sufficiently small due to a sharp drop in the
ntensity of the Gaussian beam with the distance.

. Phase Locking of a Fiber-Array Cluster via Gradient-
low Control
onsider the fiber-array cluster A in Fig. 4(b). Within this

luster, the optical field belonging to the beam tail of the
ber collimator A1 plays the same role as the reference
eld in the phase-locking system based on the interfero-
etric (heterodyne) type receiver discussed in Section 2

nd shown in Figs. 2(b) and 3(a). Correspondingly, phase
ocking of the fiber collimators belonging to the fiber-
rray cluster can be performed using the heterodyne tech-
ique described above. As already mentioned in Section 2,
his control strategy is equivalent to the continuous-time
radient descent or the gradient-flow optimization (con-

two beamlets in fiber-collimator array systems: (a) schematic il-
ree clusters (A, B, and C) coupled by two-tail sensors, (c) two-tail
ors with hexagonal arrangement, and (d) coupling of three hex-
)–(d) denote point-size photodetectors.
ns of
d of th
ollimat
s in (b
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rol) of the measured signals �J1,j��1 ,�j�� (local metrics)
orresponding to neighboring subapertures.

With this control technique, the dynamics of the phase-
ocking process inside a single cluster can be described by
he following set of equations:

�
d�j�t�

dt
= 
j J1,j� ��1�t�,�j�t�� �j = 2, . . . ,N0�, �5�

here J1,j� ��1�t� ,�j�t��=sin��1�t�−�j�t��=sin��1+u1�t�−�j
uj�t�� are the derivatives (gradient components) of the

ocal metric signals (4) over the phase errors ��j�t��, and

j� are the feedback gain coefficients. Note that since the
eam tail of the fiber collimator A1 is used as a reference,
he phase u1�t� does not have an impact on the phase-
ocking dynamics of the cluster and hence can be arbi-
rarily chosen, e.g., set to zero. In Eqs. (5) we assumed
hat during the transition (phase-locking) process with
he characteristic control system response time �, the
hases ��j�t�� can be considered stationary, that is, �j�t�
�j for all j=1, . . . ,N0.
The signals J1,j� =sin��1−�j−uj�t�� in Eqs. (5) can be ob-

ained using heterodyne-based synchronous detection sig-
al processing, as in Fig. 3(a). It can be easily shown that
steady-state solution of the system of equations (5) can

e represented in the form ��j�t→���=mod2���1�
mod2���1� that corresponds to the phase-locked state.
As an example of the phase-locking-process dynamics,

onsider a fiber-array cluster composed of seven fiber col-
imators with hexagonal arrangement as shown in Fig.

ig. 5. Phase locking based on the gradient-flow optimization c
luster and (c), (d) two coupled clusters shown in the top-right
andom initial conditions ��j�0�� in (a) and (c) and the ensemble-a
nd (d) are obtained by numerical integration of Eqs. (5) with
A,B=
B,A=0.5, respectively. The reference phase �1 is shown by t
he phase-locking process.
(c). Equations (5) are numerically integrated over a time
nterval T=10� using the fourth-order Runge–Kutta

ethod [36]. The initial values of the phase errors are as-
umed to be random with uniform probability distribution
ithin the interval �−� ,��. An example of temporal evo-

ution of phase errors �j�t�, j=1, . . . ,7, is shown in Fig.
(a). Phase locking here corresponds to the transitioning
o the steady-state solution �j�t→��=�1 occurring during
he time interval T�5�. Note that with the increase of
he initial phase error amplitudes, the transitioning to
he stationary steady state is commonly accompanied by
� jumps in phase error values. In Fig. 5 these 2� phase

umps are removed.
As a phase-locking performance metric, consider the

nsemble-averaged sum of squared phase error deviations
rom the reference phase �1=�1=const,

��
2�t� =� 1

N0 − 1 	
j=2

N0=7

��j�t� − �1�2� . �6�

he ensemble averaging, denoted by the angular brackets
n Eq. (6), is performed over 1000 random realizations of
nitial phase shifts. The results of numerical simulations
re presented in Fig. 5(b) as time dependence of the stan-
ard deviation ���t�. As can be seen, phase-locking control
esults in nearly 102-fold decrease of �� during time inter-
al T�8�.

in a fiber-array system with two-tail sensors for (a), (b) a single
in (b) and (d). Temporal dynamics of phase errors ��j�t�� from

d phase-locking error standard deviations ���t� and ��
A+B�t� in (b)

j=2, . . . ,7, and Eqs. (7) and (8) with 
j
A=
j

B=1, j=1, . . . ,7, and
izontal line in (a). The insert in (c) illustrates an initial stage of
ontrol
inserts
verage

j=1,
he hor
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. Coupled Fiber-Array Clusters
onsider now phase locking of a fiber-array system com-
osed of a set of clusters. As an example, a fiber-array sys-
em containing three mutually coupled clusters (denoted
s A, B, and C) is shown in Fig. 4(b). The question to ask
s how can these clusters be locked together?

Note that phase locking of different clusters requires
ensing of phase errors for beamlets belonging to different
lusters. This can be achieved using beam tails belonging
o different clusters, shown in Fig. 4(b). The photodetec-
ors and the corresponding metric signals (such as met-
ics JA,B and JA,C) that are used for inter-cluster coupling
efine the coupling node. For example, in Fig. 4(b), inter-
oupling of clusters A and B is achieved using the subap-
rtures A2 and B2, while clusters A and C are connected
hrough the subapertures An and C3. Note that the same
lusters can be connected using several coupling nodes. At
he same time, phase locking of the entire fiber array does
ot require a direct connection between all clusters in the
rray. For example, in Fig. 4(b), clusters B and C are not
irectly coupled (although this coupling can be intro-
uced, e.g., by using the subapertures C2 and B1). Cou-
ling between those clusters is achieved indirectly using
he sensing nodes coupling these two clusters with the
luster A.

. Dynamics of Coupled Fiber-Array Clusters
he mathematical model describing the phase-locking
rocess in a fiber-array system composed of several
oupled clusters (cluster network) can be obtained by in-
roducing the following changes to the system of equa-
ions (5). First, the mathematical model for the cluster
etwork should include additional equations describing
ynamics of phase errors corresponding to the reference
eams. In Fig. 4(b) these are the phase errors correspond-
ng to fiber collimators A1, B1, and C1. Second, the equa-
ions for coupling nodes in each cluster should include ad-
itional terms that depend on the inter-cluster metrics
such as, for example, metrics JA,B and JA,C in Fig. 4(b)].

For the sake of simplicity, consider the system with
nly two clusters (A and B) composed of N0

A and N0
B fiber

ollimators, respectively. Assume that each cluster has a
ingle coupling node: one corresponding to the subaper-
ure i (cluster A) and another to the subaperture k (clus-
er B). With the introduced notation, the mathematical
odel describing the phase-locking process in this system

an be represented in the following form:

�
d�j

A�t�

dt
= 
j

A sin��1
A�t� − �j

A�t�� + �ji
A,B sin��k
B�t� − �j

A�t��

�j = 2, . . . ,N0
A�, �7a�

�
d�1

A�t�

dt
= −

1

N0
A − 1	

j=2

N0
A


j
A sin��1

A�t� − �j
A�t��, �7b�

�
d�j

B�t�

dt
= 
j

B sin��1
B�t� − �j

B�t�� + �jk
B,A sin��i
A�t� − �j

B�t��
�j = 2, . . . ,N0
B�, �8a�

�
d�1

B�t�

dt
= −

1

N0
B − 1	

j=2

N0
B

�j
B sin��1

B�t� − �j
B�t��. �8b�

ere �ji=1 for i= j and zero otherwise, and �j
A,B�t� and 
j

A,B

re, respectively, the phase errors and the gain coeffi-
ients for either the A or the B cluster. The coefficients
A,B and 
B,A in Eqs. (7a) and (8a) describe the inter-
luster coupling strength. The dynamics of phase errors
n cluster A is described by Eqs. (7) and in cluster B by
qs. (8). Equations (7b) and (8b) correspond to the phases
f the reference beamlets.

It is easy to show that the system of equations (7) and
8) has the following stable steady-state solutions:

�j
A�t → �� = mod2���1

A�t → ��� �j = 2, . . . ,N0
A�, �9a�

�j
B�t → �� = mod2���1

B�t → ��� �j = 2, . . . ,N0
B�, �9b�

�1
A�t → �� = mod2���1

B�t → ���. �9c�

hese solutions correspond to locking of phases both in-
ide each cluster [Eqs. (9a) and (9b)] and between the
lusters [Eq. (9c)].

Consider first weak inter-cluster coupling and assume
hat in Eqs. (7) and (8) 
j

A=
j
B=
j and 
A,B=
B,A�
j. In

his case, the dynamics of phase errors can be described
s a two-stage evolution process. The first stage is char-
cterized by a relatively fast locking of phases within
ach cluster. This process occurs during the time interval
� t� t1. At the end of this stage the piston phases are
early locked within each cluster, so that �j

A�t1�
mod2���1

A�t1�� and �j
B�t1�
mod2���1

B�t1��. Correspond-
ngly, the system of equations (7) and (8) can then be re-
uced to the following two equations describing the sec-
nd stage of the phase-locking process—a relatively slow
ecrease of the phase difference between two clusters:

�
d�i

A�t�

dt
= 
A,B sin��k

B�t� − �i
A�t��, �10a�

�
d�k

B�t�

dt
= 
A,B sin��i

A�t� − �k
B�t��. �10b�

his inter-cluster phase locking occurs with a character-
stic time that is significantly longer, on the order of
A,B/
j�1.
An example of the phase-locking dynamics in the sys-

em with two clusters composed of N0
A=N0

B=7 fiber colli-
ators is illustrated in Figs. 5(c) and 5(d). The geometry

f the system is shown by the insert in Fig. 5(d). The clus-
ers are coupled through a single node (subapertures A5
nd B3) with the gain and coupling coefficients 
j

A=
j
B=
,

=1, . . . ,7, 
AB=
BA=
c, and 
c /
=0.5. As can be seen
rom Fig. 5(c), the in-cluster phase locking nearly ends at
�6� (see the insert), while the inter-cluster phase lock-

ng occurs over a significantly longer time, T�100�.
Time dependence of the ensemble-averaged phase error
etric ��

A+B�t� that is described by an expression similar
o Eq. (6) but includes all 14 participating subapertures is
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hown in Fig. 5(d). An initial sharp decrease in the phase
rror metric ��

A+B�t� at t�4� is associated with the in-
luster phase locking—the first stage of the system dy-
amics described above. The numerical simulations show
hat with an increase of the ratio 
c /
 up to unity, both in-
nd inter-cluster phase locking occur on nearly the same
ime scale, which corresponds to the optimal scenario,
hile a further increase of the ratio 
c /
 leads to a rela-

ively weaker in-cluster coupling and the corresponding
lowdown of the overall phase-locking dynamics.

. Phase Locking via SPGD Optimization
he obscuration-free pupil-plane phase locking can also
e achieved using direct optimization of measured signals
metrics), as described in Section 2. In this control ap-
roach, signals from a set of photodetectors can be used
s local metrics, or, alternatively, these metrics can be
lectronically combined into a single phase-locking perfor-
ance metric.
To illustrate, consider a signal (local metric)

l,k��l�t� ,�k�t�� measured with a two-tail interference sen-
or coupling two neighboring subapertures l and k. Simi-
arly to Eq. (4), for the local metric we have

Jl,k�t� = Jl,k��l�t�,�k�t�� = Il + Ik + 2
IlIk cos��k�t� − �l�t��

�k = 1, . . . ,N0; k � l�. �11�

ssume that a metric J	�t� (global or combined metric) is
btained by electronically combining M local metrics,

J��t� = 	
k�l

M

Jl,k��l�t�,�k�t��. �12�

he set of sensors and the corresponding signals (local
etrics) that are included in the sum (12) can be differ-

nt, but optimization of the combined metric J	�t� can
ead to the phase-locked state only if this metric depends
n the phase errors of the entire fiber-array system: J	
J	��1�t� , . . . ,�Nsub

�t��.
The phase locking based on the SPGD control can be

erformed using optimization of either local metrics Jl,k
r the combined metric J	. Similarly to Eq. (2), one can
asily derive the corresponding SPGD control update
quations for both phase-locking system types. In the case
f the combined metric we have

�j
�n+1� = �j

�n� + 
�
�n��J�

�n���j
�n� �j = 2, . . . ,N0; n = 1, . . . �,

�13�

here �J	
�n� is the metric perturbation in response to con-

rol signal perturbations ���j
�n��, and 
	

�n� is the gain coef-
cient at the nth iteration. Note that the subaperture j
1 is considered here as a reference.
For the phase-locking control system based on SPGD

ptimization of the local metrics we have

�j
�n+1� = �j

�n� + 
j
�n��J1,j

�n���j
�n� �j = 2, . . . ,N0; n = 1, . . . �,

�14�

here ��J1,j
�n�� and �
j

�n�� are, respectively, the local metric
erturbations and the gain coefficients at the nth itera-
ion. The control rule (14) describes a set of weakly
oupled identical SPGD optimization processes operating
n parallel. Note that the control loops in Eq. (14) are
oupled only through a piston phase corresponding to a
eference subaperture �j=1�. This control algorithm rep-
esents a clone of the SPGD optimization algorithm
nown as the decoupled SPGD (D-SPGD) control [37].
As an example of phase-locking control based on SPGD

nd D-SPGD optimization approaches, consider the fiber-
rray configurations composed of a single cluster as in
ig. 4(c). The numerical simulations results are presented

n Fig. 6. Evolution of the phase errors during the SPGD
nd D-SPGD iteration processes (13) and (14) with iden-
ical random initial conditions ��j�t=0��= ��j

�0�� for both
ases are shown in Figs. 6(a) and 6(b), respectively. The
hase-locking process convergence occurs significantly
aster (approximately eight-fold) with parallel optimiza-
ion of the local metrics using D-SPGD controller (14). A
imilar conclusion can be made based on analysis of the
ormalized ensemble-averaged phase-locking perfor-
ance measures �Ĵ	�t����J	�t�� /J	

0 and ���t� in Figs. 6(c)
nd 6(d), where J	

0 is the combined metric corresponding
o zero phase errors. Numerical analysis of the phase-
ocking process in the fiber-array system composed of two
lusters as in Fig. 5(d) also demonstrated significantly
aster convergence in the case of parallel optimization of
he local metrics [D-SPGD controller similar to Eq. (14)].

. PUPIL-PLANE PHASE LOCKING WITH
HREE-TAIL SENSORS
. Piston Phase Sensing Based on Interference of Three
eam Tails
iston phase sensing based on the two-tail interference

echnique requires at least Nsub−1 sensors. For a fiber ar-
ay with a large number of fiber collimators Nsub, the cor-
esponding sensor network can be quite complicated.

The number of sensors can be significantly reduced us-
ng the three-tail interference sensing technique de-
cribed in this section. In this approach, photodetectors
re placed in the overlapping region of beam tails belong-
ng to three neighboring subapertures, as shown in the in-
ert in Fig. 7(a). Note that sensing of piston phases in the
rray of seven fiber collimators in this figure requires
hree photodetectors [small gray circles in the insert in
ig. 7(a)] for the three-tail and six photodetectors [black
quares in the insert in Fig. 5(b)] for the two-tail interfer-
nce technique. In addition, as can be seen from these fig-
res, the physical space available for the photodetectors

s sufficiently larger in the three-tail interference sensing
echnique.

To obtain an analytical expression for the signal (met-
ic) registered by a three-tail interference sensor, consider
he neighboring subapertures Al, Ak, and Am and a point-
ize photodetector located inside the overlapping region of
he corresponding beam tails. Similarly to expression (3),
he metric signal (with accuracy to a constant multiplier
nd a phase shift dependent on the photodetector posi-
ion) is given by

Jl,k,m�t� = Jl,k,m��l�t�,�k�t�,�m�t��

= �Il
1/2 exp�i�l�t�� + Ik

1/2 exp�i�k�t��

+ Im
1/2 exp�i�m�t���2, �15�
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here Il, Ik, and Im are intensities of the corresponding
ptical fields at the photodetector location. Considering
n optical field of the lth fiber collimator as a reference,
epresent Eq. (15) in the following equivalent form:

Jl,k,m��l�t�,�k�t�,�m�t��

= Il�1 + �k exp�i�k�t� − i�l�t�� + �m exp�i�m�t� − i�l�t���2

= 2Il��0
2 + �k cos��k�t� − �l�t�� + �m cos��m�t� − �l�t��

+ �k�m cos��k�t� − �m�t���, �16�

here �k
2=Ik /Il, �m

2 =Im /Il, and �0
2= �1+�k

2+�m
2 � /2 are the

oefficients dependent on the intensities Il, Ik, and Im, and
k�t�−�l�t� and �m�t�−�l�t� are the differences between the
hase errors of the reference, the lth, and the neighbor-
ng, kth and mth, subapertures. For simplicity we as-
umed that during the phase-locking process the piston
hases �j can be considered as stationary, so that �j�t�
uj�t�+�j, where j=1, . . . ,Nsub.

. Phase Locking via Combined Metric Optimization
he most straightforward approach for the fiber-array
hase locking using three-tail interference sensors is op-
imization of a combined metric J	�t� composed of elec-
ronically summarized signals (metric components)
l,k,m��l ,�k ,�m�. Note that the combined metric J	�t� may
lso include additional metric components Jq,p��q ,�p� ob-
ained with two-tail interference sensors. Along with the
hree-tail sensors, these extra sensors can be used, for ex-
mple, to interconnect fiber-array clusters, analogous to
hose in Fig. 4(d).

ig. 6. Pupil-plane phase locking of the fiber-array cluster syste
ombined and (b), (d) the local metrics. Dynamics of the residual
nitial conditions in (a) and (b) and the ensemble-averaged phase-
sing the control algorithms (13) and (14), respectively. Referenc
Consider a combined metric composed of K signals ob-
ained using three-tail and M signals obtained with two-
ail interference sensors:

J��t� = 	
m�k�l

K

Jl,k,m��l�t�,�k�t�,�m�t�� + 	
p�q

M

Jq,p��q�t�,�p�t��.

�17�

rom Eqs. (11) and (16) it is easy to see that the maxi-
um values of terms Jl,k,m��l ,�k ,�m� and Jq,p��q ,�p� in
q. (17) are achieved when the differences between the
hase errors �k, �m, and �l for three-tail and between �q
nd �p for all two-tail sensors are equal or differ by an in-
eger multiple of 2�. This means that in the case when all
ubapertures are interconnected, the global maximum of
he combined metric (17) corresponds to the phase-locked
tate. Full interconnection means that differences �k�
�m� between the phase errors for arbitrarily chosen sub-
pertures k� and m� can be represented as a sum of the
hase differences that are present in expression (17).
To illustrate the combined metric-optimization-based

ontrol, consider the fiber arrays with three-tail interfer-
nce sensors, as shown in Fig. 7(a).

In the numerical simulations the following composed
etric corresponding to three sensors is considered:

J� = J1,2,3��1,�2,�3� + J1,4,5��1,�4,�5� + J1,6,7��1,�6,�7�.

�18�

he metric J	 is optimized using the SPGD control algo-
ithm (13). The phase-locking performance is estimated

n Fig. 4(c) with two-tail sensors using optimization of (a), (c) the
phase errors ��j�t��, j=1, . . . ,7, from an identical set of random

g performance metrics �Ĵ	�t�� and ���t� in (c) and (d) are obtained
e �1 is shown by the horizontal lines in (a), (b).
m as i
piston

lockin
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sing the normalized ensemble-averaged values �Ĵ	�
�J	� /J	

0 and the phase-locking error standard deviation
��t� [see Eq. (6)]. The results are presented in Fig. 7(a) by
he dashed lines.

Note that in most cases of the fiber-array systems ex-
mined, the control approach based on optimization of
ombined metrics [metrics (12), (17), and (18)] provided
ransitioning to the true phase-locked state. At the same
ime the numerical simulations demonstrated certain dis-
dvantages of this control algorithm. In comparison with
he parallel optimization of an array of local metrics dis-
ussed in Subsections 3.C–3.F for two-tail sensor net-
orks, the use of combined metric optimization results in

ignificantly slower convergence speed and on average
ower accuracy in locking of piston phases.

This behavior can be explained by the potential exis-
ence of a number of local maxima of the combined metric,
hich is rather common for optimization of functions that
re dependent on a large number of control variables.

. Optimization of Three-Tail Local Metrics with
-SPGD Controller
onsider a phase-locking control algorithm that utilizes
easurements obtained with three-tail sensors but pro-

ides better phase-locking accuracy and faster transition-
ng process convergence.

ig. 7. Phase locking of a fiber array [shown in the insert in (a)]
sing local metrics obtained with three-tail sensors. Time depen-
ences of the ensemble-averaged phase-locking performance
easures �Ĵ	�t�� and ���t� using (a) optimization of the combined
etric with SPGD (dashed lines) and local metrics with D-SPGD

solid lines) control algorithms and (b) the gradient-flow optimi-
ation algorithm (19).
By way of example, assume that a fiber-array system is
omposed of seven fiber collimators and three sensors, as
n the insert in Fig. 7(a). The local metrics J1,2,3��1 ,�2 ,�3�,
1,4,5��1 ,�4 ,�5�, and J1,6,7��1 ,�6 ,�7�, measured by these
ensors, depend on all seven phase errors �j, j=1, . . . ,7. At
he same time, for a fixed value of the reference phase �1,
ach local metric depends on only two independent phase
rrors. Since each of the metrics depends on the reference
hase, independent maximization of the local metrics
1,2,3, J1,4,5, and J1,6,7 results in locking of piston phases
f all seven subapertures.

Maximization of the local metric can be performed ei-
her sequentially or in parallel using, for example,
-SPGD, multidithering, or heterodyne techniques.
The D-SPGD phase-locking control system for the fiber-

rray system with three-tail sensors as in Fig. 7(a) is com-
osed of three identical subsystems that are described by
he iterative equations similar to Eqs. (14) obtained for
he two-tail sensors. The difference from the control rule
14) is that the identical metric perturbation value
�J1,2,3

�n� , �J1,4,5
�n� , or �J1,6,7

�n� ) is used to update controls in
wo neighboring subapertures coupled by the correspond-
ng three-tail sensor.

Dynamics of the phase-locking system based on
-SPGD optimization of local metrics obtained with

hree-tail sensors is illustrated in Fig. 7(a) by solid lines.
n comparison with optimization of the combined metric
dashed lines), the phase-locking control based on local
etric optimization provides significantly faster conver-

ence speed.

. Gradient-Flow Control with Three-Tail Sensing
onsider now phase locking based on the gradient-flow
ptimization of the local metrics measured with the three-
ail sensors. The gradient components of the local metrics
hat are required for the gradient-flow optimization can
e obtained using the multidithering technique. To illus-
rate, consider as an example three neighboring subaper-
ures A1, A2, and A3, corresponding to a single three-tail
ensor in the fiber-array cluster with seven subapertures
s in Fig. 7(a). The sensor output signal—the local metric
1,2,3��1 ,�2 ,�3�—depends on the phase errors �1, �2, and
3 corresponding to these subapertures. Assume that
ingle-frequency dither signals a sin�
t� and a cos�
t� are
pplied to the phase shifters corresponding to the second
nd third subapertures, thus resulting in modulation of
he errors �2 and �3 and perturbations of the local metric
1,2,3��1 ,�2 ,�3�. We assume that dithering amplitude a is
mall �a�1� and that frequency 
 exceeds the character-
stic frequency bandwidth of piston phase variation in the
ber-array system.
It can be easily shown that using the heterodyne detec-

ion technique discussed in Section 2, one can electroni-
ally obtain the gradient components �J1,2,3��1 ,�2 ,�3� /��2
nd �J1,2,3��1 ,�2 ,�3� /��3 of the metric J1,2,3��1 ,�2 ,�3�.
ote that the identical dithering signals can be used for
easurements of the gradient components for the local
etrics J1,4,5��1 ,�4 ,�5� and J1,6,7��1 ,�6 ,�7�.
Similarly to Eqs. (5) for the fiber-array cluster with

wo-tail sensors, phase-locking control can be imple-
ented using the gradient-flow optimization algorithm.
or the fiber-array system with three sensors as in Fig.
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(a), the corresponding gradient-flow control is described
y a set of the following equations:

�
d�j�t�

dt
= 
j

�J1,j,j+1

��j

= 
j�sin��1�t� − �j�t�� + sin��j+1�t� − �j�t���,

�19a�

�
d�j+1�t�

dt
= 
j+1

�J1,j,j+1

��j+1

= 
j+1�sin��1�t� − �j+1�t�� + sin��j�t� − �j+1�t���,

�19b�

here j=2,4,6 and �
j� are the feedback gain coefficients.
n derivation of the gradient components in Eqs. (19) we
sed the three-tail signal representation in the form of ex-
ression (16).
It is easy to show that equations (19) have a stable

teady-state solution corresponding to the phase-locked
tate. The phase-locking dynamics in this system are il-
ustrated in Fig. 7(b). The drawback of phase-locking con-
rol based on the gradient-flow optimization is related to
n additional complexity of the control electronics that re-
uires dithering and heterodyne filtering of the local met-
ic gradients in comparison with the SPGD control.

. PHASE LOCKING BASED ON
OCAL-PLANE BEAM-TAIL SENSORS
. Focal-Plane Beam-Tail Interference

n our analysis we assumed that the size of photodetec-
ors in the beam-tail interference sensors does not exceed
he characteristic width w of either interference fringes
or the two-tail or bright and dark spots for the three-tail
ensor. In both cases value w can be estimated from the
ell-known expression w=��f0 / l� describing the width of

he interference fringes formed at a distance f0� f in
oung’s experiment with two point light sources that are
eparated by a distance l [38]. In our case l is the distance
etween two neighboring fiber tips, and f0 is the distance
etween the fiber tips and the plane of the photodetectors,
s in Fig. 4(a).
Note that in practical fiber-array systems the collimat-

ng lens focal distance f may exceed the separation dis-
ance l by only a few times (e.g., f / l�5 in [3]). Corre-
pondingly, the characteristic spatial scale w in these
ystems can be as small as a few micrometers. Since the
ize of photodetectors and the accuracy in their position-
ng should be smaller than w, practical implementation of
he two- and three-tail interference sensors may present a
hallenging problem.

This technical problem can be overcome relatively eas-
ly by focusing beam-tail sections associated with the
ame sensor onto a common focal region (focal spot) using

specially designed combined focusing element (CFE)
omposed of an array of off-axis focusing elements (mir-
ors), as shown in Fig. 8(a) [39]. The focal spots are lo-
ated a distance fCFE from the CFE.

The off-axis focusing mirrors of the CFE can be made
n (or integrated into) a common substrate with a set of
oles that are large enough to prevent obscuration of the
orresponding collimating lens aperture. This combined
ocusing element can be manufactured using, for ex-
mple, the diffractive optics technique [39]. The CFE can
e shifted back from the fiber-array pupil plane, thus cre-
ting additional space for the off-axis focusing mirror seg-
ents that can be required for fiber-array systems with
igh fill factor.
An example of the off-axis mirror geometry for two- and

hree-tail sensors is shown in Fig. 8(b). In this picture the
ff-axis focusing mirrors M2,1 and M1,2 of the neighboring
ubapertures A1 and A2 have a common focus at the point

a distance fCFE from the CFE. Similarly, the mirrors
1,2,3, M2,3,1, and M3,1,2 of the three-tail focal-plane sen-

or focus beam-tail sections of the corresponding subaper-
ures A , A , and A onto a common focal spot.

ig. 8. Phase locking based on focal-plane beam-tail interfer-
nce sensors: (a) notional schematic of the focal-plane beam-tail
ensor and (b) geometries of off-axis focusing mirrors (M) corre-
ponding to two- and three-tail focal-plane sensors. Grayscale
mages are examples of focal-plane intensity distributions ob-
ained using the parameters of the experimental fiber array re-
orted in [3]. Small circles at their centers show photodetector
pertures.
1 2 3



i
t
a
r
c
F

r
n
m
t
p
i
m
t
i

B
W
I
s
t
(
t
d
E
e
i
t
p

r
i
p
s
t
p
o
f
t

a
t
t
r
g
c

w
b
f
t

c
c
s
f

t
l
d
m
V
g
t
t
n

f
i

w
G
I
−
t
t
−
w
p
p

t
t
e

w
o
p
b
a

w
c

t
t
e
C
w
t
t

A118 J. Opt. Soc. Am. A/Vol. 27, No. 11 /November 2010 Vorontsov et al.
The characteristic size of the focal spot central lobe bF
s proportional to the distance fCFE between the CFE and
he plane of photodetectors and hence can be increased by
rranging photodetectors at the rear plane of the fiber ar-
ay. Examples of the intensity patterns formed at the fo-
al plane of the two- and three-tail sensors are shown in
ig. 8(b) for both random and phase-locked states.
In the numerical simulations the CFE consists of an ar-

ay of off-axis parabolic mirrors in the form of 60-deg an-
ular segments for two-tail and 120-deg annular seg-
ents for three-tail focal-plane sensors. Note that other

ypes of aspheric mirror surfaces, e.g., elliptical, can in
rinciple be utilized as well. As seen from the focal-plane
ntensity patterns in Fig. 8(b), phase locking results in

aximization of the peak intensity value at the photode-
ector location (white circles at the centers of grayscale
mages).

. Phased Array with Focal-Plane Beam-Tail Sensors:
ave-Optics Model

n our previous analysis we assumed for simplicity that
ensing of phase errors is performed using two- or three-
ail sensors with infinitesimally small-size photodetectors
point-size detectors). This assumption allowed us to ob-
ain simple analytical expressions describing the depen-
ence of measured signals (metrics) on phase errors [see
qs. (11) and (16)]. At the same time the actual size (ap-
rture) of the photodetector or a pinhole located in front of
t as in Fig. 8(a) can significantly affect phase-locking sys-
em performance, including control process stability,
hase-locking bandwidth, and accuracy.
In this and the following subsection we consider a more

ealistic case of obscuration-free pupil-plane phase lock-
ng using focal-plane beam-tail sensors with finite-size
hotodetectors. In this case the dependence of the mea-
ured signals (metrics) on phase errors cannot be ob-
ained analytically, and therefore performance analysis of
hase-locking systems requires wave-optics simulations
f the entire optical train from the fiber tips to the off-axis
ocusing element and further to the plane of the photode-
ectors.

As an example of such analysis, consider the coherent
rray of Nsub=7 fiber collimators as in Fig. 1(a). Assume
hat the complex amplitudes of the outgoing beamlets’ op-
ical fields right before the collimating lenses can be rep-
esented in the form of diverging Gaussian beams propa-
ating along the optical axis (oz direction) centered at the
oordinates rj, that is,

Aj�r − rj,t� = A0�r − rj�exp�− ik�r − rj�2/2f + i�j�t��

�j = 1, . . . ,Nsub�, �20�

here A0�r−rj�=A0 exp�−�r−rj�2 /a0
2�, a0 is the Gaussian

eam characteristic width parameter, A0�0 is a constant,
is the collimating lens focal distance, k=2� /�, and � is

he wavelength.
To simplify the analysis, assume that the combined fo-

using element is located directly behind the fiber-array
ollimating lenses at the plane z=0 and focuses the tail
ections of the divergent Gaussian beam to the distance

.
CFE
Consider a single off-axis mirror segment that focuses
he lth region of the jth beam tail to the kth photodetector
ocated at the plane z=−fCFE with the center at the coor-
inate vector rk. The reflection coefficient of this off-axis
irror segment can be described by a stepwise function
l�r−rk� that equals unity inside the mirror segment re-
ion �l and zero otherwise. In the numerical simulations
his region is defined by an annular segment adjacent to
he jth subaperture with the outer diameter l and the in-
er diameter d.
With the introduced notation, the complex transfer

unction of the off-axis mirror element can be represented
n the form

Tl
CFE�r,rj,rk,t� = Vl�r − rk�exp�− i��r − rj,f�

+ i��r − rk,fCFE��, �21�

here ��r , f�=−k�r�2 / �2f� is the parabolic phase of the
aussian beam (beamlet) at distance f from the fiber tip.

n this expression, the presence of the phase term −��r
rj , f� in the transfer function (21) leads to cancellation of

he parabolic phase of the divergent Gaussian beamlet at
he CFE plane, while the second phase term ��r
rk , fCFE� in Eq. (21) results in formation of an optical
ave reflected from the mirror segment with convergent
arabolic phase with focus at the point �rk ,z=−fCFE�, the
oint of the photodetector location.
The complex amplitude Al

CFE�r ,rj ,rk , t� of the jth beam
ail reflected off the lth mirror at the plane z=0 toward
he kth photodetector is therefore given by the following
xpression:

Al
CFE�r,rj,rk,t� = A0�r − rj�Vl�r − rk�

� exp�i��r − rk,fCFE� + i�j�t��

� Ãl
CFE�r,rj,rk�exp�i�j�t��, �22�

here Ãl
CFE�r ,rj ,rk� is the time-independent component

f the beam-tail complex amplitude. At the photodetector
lane z=−fCFE, the corresponding complex amplitude can
e expressed through the Fresnel diffraction integral [38]
s

Al
PD�r,rj,rk,t� = −

ik

2�fCFE
exp�ikfCFE� � Al

CFE�r�,rj,rk,t�

�exp�− i��r� − r,fCFE��dr�

� Ãl
PD�r,rj,rk�exp�i�j�t��, �23�

here Ãl
PD�r ,rj ,rk� is the time-independent optical field

omponent.
The optical field at the kth photodetector represents

he sum of all the contributing beam tails. For both the
wo- and the three-tail interference sensors considered,
ach beamlet contributes only one tail section to this field.
orrespondingly, in Eq. (23) index l can be associated
ith one of the beamlet indices j and hence can be omit-

ed. The intensity distribution at the plane of the kth pho-
odetector is then given by
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Ik
PD�r,t� = �	

lk=1

Nng

Ãlk
PD�r,rk�exp�i�lk

�t���2

, �24�

here Nng=2 for the two-tail and Nng=3 for the three-tail
ocal-plane sensors. The indices lk in Eq. (24) identify the
eighboring subapertures that contribute their beam-tail
ections to the optical field at the plane of kth photodetec-
or. The signal (local metric) Jk�t� measured by the kth
hotodetector can be obtained by integrating Eq. (24) over
he finite aperture of radius bPD centered at rk:

Jk�t� =�
SPD

Ik
PD�r,t�d2�r − rk�, �25�

here SPD=�bPD
2 . It is easy to show that for the point-size

hotodetector the local metric value obtained from Eq.
25) is equivalent to Eq. (16) used in the analysis in Sec-
ion 4.

. Wave-Optics Simulations of Phase-Locking Process
erformance
onsider the results of wave-optics numerical simulations
f the phase-locking system based on local metrics optimi-
ation (D-SPGD controller) for the fiber-array system
omposed of seven fiber collimators as in Fig. 4(b) with
hree-tail focal-plane sensors. The parameters of the sys-
em correspond to the fiber-array system described in [3]:
=27 mm, a0=0.45d, l=1.37d, f=5.5d, �=1.06 �m. The
FE consists of Nsub=7 subapertures (circular holes of di-
meter d) and nine off-axis parabolic mirror segments in
he form of 120-deg annular zones, as shown in Fig. 9(a).
ach three adjacent mirrors, denoted in the figure by the
reas with identical fills, have a common focus at fCFE
8.9d. The CFE is located at the fiber-array system pupil
lane �lCFE=0�.
In the numerical simulations, the metrics (25) are opti-
ized using the D-SPGD control algorithm described in
ubsection 4.C. Similarly to the analysis for the point-size
hotodetectors, the phase-locking performance is esti-
ated using both the normalized ensemble-averaged pa-

ameter �Ĵ	�= �J	� /J	
0 and the phase-locking error stan-

ard deviation �� [see Eq. (6)], where J	=J1+J2+J3 and

	
0 is the metric value corresponding to zero phase errors.
veraging is performed over 100 random realizations of

nitial piston phases.
The numerical simulation results are shown in Fig.

(b) for the point-size photodetector (bPD=0, solid lines)
nd for the photodetectors of two different sizes: bPD
bAiry/2 (dashed lines), and bPD=bAiry (dot-dashed lines),
here bAiry=1.22��fCFE/ l� is the Airy disk radius for the

ocusing element with aperture of diameter l (the outer
iameter of the mirror segment) and focal distance fCFE.
s can be seen, the normalized metrics �Ĵ	� converge to

heir optimal value independently of the size of the pho-
odetector. Nevertheless, the phase-locking error ��—the
rue characteristic of phase-locking performance—is quite
ensitive to the photodetector size. The achieved value of
� increases with the increase of the photodetector aper-
ure size.
. CONCLUSION
n this paper we introduced and analyzed several control
echniques and system architectures that can be used for
hase locking of the outgoing laser beams (beamlets) that
re generated at the pupil plane of a coherent fiber-
ollimator array (pupil-plane phase locking). The tech-
iques considered are based on sensing of piston phases of
he outgoing beamlets using an interference of periphery
tail) sections of these beams prior to these tail sections
eing clipped by the fiber-collimator lens apertures. Since
hese beam-tail interference sensors are located outside
he fiber-collimator optical train, the phase-locking meth-
ds do not require installation of any external optical el-
ments at the optical train of the operating fiber-array
ystem. From this viewpoint the fiber-collimator array
ith the obscuration-free phase-locking system described

ig. 9. Phase locking with focal-plane beam-tail sensors: (a)
chematic of the combined focusing element for three-tail focal-
lane sensing used in numerical simulations (left), phase pattern
f the complex transfer function argument in Eq. (21) corre-
ponding to three off-axis parabolic mirrors with a common focal
pot (top-right), intensity distribution of the beam tails at the
FE plane (middle-right), and intensity distribution at the focal
lane (bottom-right); (b) metrics �Ĵ	� and �� versus the iteration
umber n for three different photodetector aperture radii: bPD
0 (solid lines), bPD=bAiry/2 (dashed lines), and bPD=bAiry (dot-
ashed lines). The dashed circle in (a) indicates the Airy disk of
iameter 2bAiry.
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an be considered as a new type of a coherent laser beam
irector system that does not require a bulky optical
eam expander (telescope) in order to increase the outgo-
ng laser beam aperture. This conformal beam director
an also include additional capabilities for adaptive optics
ompensation of phase aberrations caused by the outgo-
ng conformal beam that are directly integrated into each
ber collimator of the fiber array.
Among potential challenges for practical implementa-

ion of the obscuration-free pupil-plane phase-locking
echniques described, we can mention strict requirements
n positioning and alignment of photodetectors in the
wo- and three-tail interference sensors as well as the po-
ential presence of additional static piston phase aberra-
ions related, for example, to non-common path errors
aused by the variations in the optical thickness of the
ollimating lenses and/or non-optimal positioning of the
eam-tail focusing mirror elements. These unsensed
tatic phase shifts cannot be detected by the beam-tail in-
erference sensors. Nevertheless, they can be evaluated
y measuring piston phases of the outgoing beamlets dur-
ng the closed-loop operation of the phase-locking system
escribed. These measurements require an external
avefront sensor placed in front of the fiber array, such as

or example in Fig. 2. However, after these measurements
re completed, this external wavefront sensor can be re-
oved. The measured static phase errors can be precom-

ensated, e.g., by using glass plates with calibrated thick-
ess or liquid crystal (LC) phase-shifting elements (LC
ells) that are positioned in the optical train of the outgo-
ng beamlets right after they exit the collimating lenses
see Fig. 1(a)]. Another option that does not require an ex-
ernal compensating element is related to calibrated, in-
entional displacements of the beam-tail-sensor photode-
ectors. In the operating phase-locking system, these
isplacements result in the appearance of additional
hase shifts of the outgoing beamlets, as discussed in
ubsection 3.A [phase shifts � in Eq. (3)]. Optimal posi-
ioning of the photodetectors aiming at the precompensa-
ion of these phase shifts can be performed once, using an
xternal wavefront sensor that is no longer required dur-
ng the fiber-array system operation.
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