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Control methods and system architectures that can be used for locking in phase of multiple laser beams that
are generated at the transmitter aperture plane of a coherent fiber-collimator array system (pupil-plane phase
locking) are considered. In the proposed and analyzed phase-locking techniques, sensing of the piston phase
differences is performed using interference of periphery (tail) sections of the laser beams prior to their clipping
by the fiber-collimator transmitter apertures. This obscuration-free sensing technique eliminates the need for
a beam splitter being directly located inside the optical train of the transmitted beams—one of the major draw-
backs of large-aperture and/or high-power fiber-array systems. Numerical simulation results demonstrate ef-

ficiency of the proposed phase-locking methods. © 2010 Optical Society of America
OCIS codes: 010.1080, 010.7350, 140.3290, 140.3298, 140.3510, 220.0220.

1. INTRODUCTION

There has been a growing interest in development of long-
range laser beam transmitter systems with sparse (con-
formal) aperture, also referred to as conformal beam di-
rector, which are composed of an array of small-size
densely packed fiber collimators, as illustrated in Fig. 1(a)
[1,2]. This interest is stimulated in part by an underlying
presumption that the conformal beam directors can po-
tentially replace conventional bulky and expensive optical
transmitters based on large-aperture beam-forming tele-
scopes. With a fiber-array laser transmitter, basic opera-
tion functions of laser beam projection systems such as
beam pointing, target tracking, and adaptive mitigation
of the propagation-medium-induced phase aberrations
can potentially be directly integrated onto the fiber-
collimator array and performed electronically [3].

In the conformal laser beam transmitter system in Fig.
1(a) the emitted outgoing laser beams (beamlets) are
originated at the fiber tips located at fiber-collimator lens
foci. The laser energy is delivered into these fiber tips
from a multichannel master oscillator power amplifier
(MOPA) system. The MOPA system is composed of an ar-
ray of fiber amplifiers coupled to either a single seed laser
as in Fig. 1(a) or to an array of independent laser sources
[4,5].

In both fiber-array system types the optical path differ-
ences between the outgoing beamlets at the system out-
put (pupil) plane are randomly changing, which leads to a
corresponding random variation of the outgoing beamlet
aperture-averaged phases, also known as piston phases,
or phase shifts. Projection (focusing) of a conformal laser
beam composed of an array of beamlets with random pis-
ton phases leads to their incoherent overlapping (combin-
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ing) at the target plane—target-plane incoherent beam
combining [6,7].

With optimal pointing of beamlets in vacuum resulting
in their perfect overlapping, the characteristic size (diam-
eter) by of the illuminated area at the target plane (target
hit-spot size) depends inversely on the fiber-collimator ap-
erture diameter d. Correspondingly, the major beam pro-
jection performance measure—power density inside the
target hit-spot (hit-spot brightness)—is then proportional
to the product N,,;pod? of the following three parameters:
the number of fiber-array system subapertures N,
(number of fiber collimators), the output power emitted
through a single fiber collimator p, (power per fiber), and
the subaperture diameter d. From this simplified consid-
eration follows that the increase of the power density at
the target plane desired in many applications is directly
related to the increase of each of the above factors.

The increase in power-per-fiber parameter pq is typi-
cally limited by the nonlinear stimulated Brillion scatter-
ing (SBS) effect that accompanies high-energy laser beam
propagation in a fiber [8] and the laser-induced damage
threshold of fiber tips [9]. On the other hand, the increase
of the number of subapertures N, and/or the fiber-
collimator diameter d leads to a bulky transmitter aper-
ture with limited capabilities for the outgoing conformal
beam steering and pointing [10].

In principle, the target hit-spot power density can be
increased using pupil-plane incoherent beam combining
[4,5,11,12]. In this approach the outgoing beamlets are
first combined into a single beam of diameter d,~d, and
the combined beam is then expanded to a larger beam of
diameter D>d, using a conventional beam director sys-
tem as shown in Fig. 1(b). The pupil-plane incoherent
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Fig. 1. Notional schematics of laser transmitter (beam director)
based on (a) sparse (conformal) array of fiber collimators with a
single laser source and (b) pupil-plane incoherent combining of
laser beams originating from multiple laser sources.

beam combining can potentially lead to a target hit-spot
brightness increase by a factor (D/d)?. However, combin-
ing a large number N, of beamlets into a single beam
presents a challenging technical task. Besides, this tech-
nique still requires a bulky (for large D) conventional
beam-forming telescope.

In this study we consider an alternative approach in
the development of the fiber-array-based laser beam pro-
jection systems known as a coherent beam combining
[1,3,13-21]. In this approach the optical path differences
between the beamlets transmitted by the fiber array are
compensated (locked) either at the transmitter aperture
(pupil-plane coherent beam combining) or at the target
plane (target-plane coherent beam combining) or in both
planes.

With ideal phase locking of densely packed beamlets in
vacuum, one can potentially achieve beam projection per-
formance comparable with the performance of a conven-
tional beam director with a monolithic aperture of diam-
eter D [19]. The corresponding aperture can be defined
then by the smallest circle that contains all subapertures
within it, as shown in Fig. 1(a) by the dashed curve.

Thus, phase locking of the outgoing beamlets (either
pupil- or target-plane) allows potential achievement of
(D/d)?fold increase of the target hit-spot brightness
without increasing the number of fiber collimators N,
increasing the power p, transmitted through a single
fiber-collimator, or a need to combine beamlets into a
single beam with further aperture expansion. Note that
with the currently available technologies, phase locking
can be obtained only in fiber-array systems with a single
seed laser [as in Fig. 1(a)] that has sufficiently narrow fre-
quency bandwidth (typically on the order of a few mega-
hertz or less [1,3]. In addition, the entire multichannel fi-
ber system (MOPA system) should be able to support
single-mode operation and provide identical polarization
states for all output beamlets.
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Note that a single narrow-line laser source and
polarization-maintaining fiber requirements may no
longer be limiting factors in the future. At a low power
level, phase locking of an array of independent narrow-
line laser sources has already been demonstrated [22,23].
Besides, recent progress in control of polarization states
in fiber systems allows implementation of fiber-array sys-
tems with capabilities for locking of both phases and po-
larization states [24].

In this paper we consider the pupil-plane coherent
beam combining achieved by locking of piston phases
{Ai(®)}, j=1,...,Ng, originated solely from laser beam
propagation in a multichannel, single-mode polarization-
maintained fiber system and inside the fiber collimators.
The paper is organized as follows. Section 2 is dedicated
to the review of conventional control techniques that are
used for locking of piston phases in fiber-collimator array
systems. A new type of piston phase-sensing method that
uses interference of laser beam tails (two-beam-tail inter-
ference), as well as the corresponding different sensor
network architectures, are introduced in Section 3. In this
section we also analyze several phase-locking control al-
gorithms and system architectures. In Section 4 the
analysis of an array of interconnected feedback circuits is
extended to include three-beam-tail sensors. Finally, in
Section 5 we introduce the focal-plane beam-tail sensors
and derive mathematical models of phase-locking control
systems that account for the diffraction effects and finite
size of sensors.

2. PUPIL-PLANE PHASE LOCKING: BASIC
SYSTEM ARCHITECTURES

In the existing pupil-plane coherent beam-combining
(phase-locking) systems, a small fraction k<1 of the out-
going conformal beam with the complex amplitude A(r,¢)
is redirected into a phase-locking receiver using either a
single beam splitter or an array of beam splitters that are
located in front of the outgoing conformal beam, as illus-
trated in Fig. 2(a). Here r={x,y} is the coordinate vector
at both the transmitter aperture and the optical receiver
input planes, and ¢ is the time variable.

The major function of the phase-locking receiver is
transformation of the outgoing conformal beam with the
complex amplitude «A(r,t) into an output field A, (r,¢)
with the intensity distribution I,,,(r,t)=|A,,(r,t)|? that
depends on the piston phases of the outgoing beamlets.

The desired transformation is typically achieved by
combining the outgoing beamlets either with a coherent
reference field A, [r), as in Fig. 2(b), or with each other.
The latter arrangement can be easily obtained using a
lens that focuses all the outgoing beamlets into the same
area of the focal plane, as shown in Fig. 2(c). The overlap-
ping of the beamlets results in their interference. The in-
tensity  distribution of the interference pattern
I,,(r,t)—the receiver output—depends on the piston
phases of the outgoing beamlets and hence can be utilized
as an input signal for a phase-locking control system.

The feedback control loop in pupil-plane phase-locking
systems can be either optical or electronic. In a phase-
locking system with optical feedback, the output field

A,u(r,t) is coupled into a fiber tip that is located in the
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Fig. 2. Pupil-plane phase-locking control system basic architec-
tures: (a) notional schematic, (b) phase-locking receiver system
with a coherent reference wave, and (c) phase-locking receiver
with focal-plane beam combining. The systems are based on ei-
ther electronic or optical feedback loop.

focus of the combining beamlets’ lens as shown in Fig.
2(c). The optical signal coupled into the fiber is further
split and after amplification is combined with the laser
beams entering the fiber amplifiers of the MOPA system,
thus forming an array of mutually coupled nonlinear op-
tical feedback circuits. As has been shown, nonlinear dy-
namics of these optical feedback circuits can lead to a self-
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organized stationary solution corresponding to a phase-
locked state [25].

In another approach referred to as electronic phase-
locking control, auxiliary controlling piston phase shifts
{u;(t)},j=1,...,Ngy», are injected into each beamlet by us-
ing, for example, phase-shifting elements integrated into
the MOPA system. These phase shifts are used for com-
pensation of the fiber-system-induced phase shifts {A;(#)}.
With the injected controllable phase shifts {u;(#)}, the pis-
ton phases of the outgoing beamlets {5;(t)}={A;(¢)+u;(t)}
correspond to uncompensated or residual piston phase er-
rors, further also referred to as phase errors. Note that
since piston phases of type {§,(t) + 2mm}, where m is an ar-
bitrary integer number, result in an identical optical field,
the phase errors can be defined as modulo 27 functions,
that is, {5;(£)}={mody [A;(#) +u;(®)]}.

The phase-locking receiver output field is registered by
either a single photodetector or an array of 1<M=<N_,
photodetectors—a part of the feedback loop. The obtained
electronic signals (metrics) {J;(¢)}, [=1,...,M, depend on
the uncompensated phase shifts {d;(¢)}. These signals are
sent to an electronic processor (phase-locking feedback
controller) that forms control signals applied to the phase-
shifting elements—typically the lithium niobate (LiNbO3)
electro-optics phase modulators integrated into each
channel of the MOPA system [24,26,27].

Compensation of the residual phases (pupil-plane
phase locking) is commonly based on control techniques
widely used in active interferometers (laser vibrometers)
and adaptive optics, namely, the optical path difference
stabilization, also known as heterodyne, and metric opti-
mization techniques. In its turn, the metric optimization
is performed using either multidithering [28] (also re-
cently referred to as LOCSET [29]) or the stochastic par-
allel gradient descent (SPGD) control techniques
[3,30,31].

In the heterodyne phase-locking systems the outgoing
beamlets are optically combined with a reference optical
wave (see, e.g., [17]). An optical beam originated from the
same MOPA system is commonly used as a reference. The
entire control system consists then of N, independent
interferometers, as shown in Fig. 3(a).

The output field of each interferometer enters a dia-
phragm (pinhole) with a single photodetector located im-
mediately behind it. The pinhole size does not exceed the
characteristic size of the interference fringes which is de-
pendent on accuracy of angular alignment of the refer-
ence wave and beamlets.

The output signal J;[ §(¢)] measured by the photodetec-
tor at the jth control channel depends solely on the phase
error &(t). Correspondingly, the phase-locking controller
is composed of an array of N,;, independently operating
identical control subsystems used for active stabilization
of the interference patterns.

The interference signal J;[(¢)] can be represented as
the sum of two components: Jj[ﬁj(t)]=JJ(-)(t)+c7j(t), where
JJQ(t) is the independent-of-phase-error signal (de compo-
nent), and jj(t)z 7; cos (t) is the interference term. The
coefficient 0<7;=<1 is associated with interference pat-
tern visibility. Electronic signal processing of the regis-
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Fig. 3. Principal schematics of pupil-plane phase-locking optical
systems based on optical path difference stabilization with (a)
heterodyne signal detection and (b) multidithering control tech-
niques. Here w, 2, LPF, and PID denote, respectively, dither sig-
nal generation, signal summation, low-pass electrical filtering,
and proportional-integral-derivative control.

tered signal in each control channel aims at the extrac-

tion of the solely interference component o (t) (or its
derivative) that is used for compensation of the phase er-
TOT.

The components {jj(t)} can be obtained by injecting a
small-amplitude sinusoidal signal (dither) with frequency
w into either the reference wave or into outgoing beam-
lets. In the latter case the dither signal is superimposed
with the control signal applied to the corresponding
phase-shifting element of the MOPA system as shown in
Fig. 3(a). Using a standard synchronous detection tech-

nique, the signals {J i(t)} (or their derivatives) can be elec-
tronically separated. The electronic signal processing in-
cludes multiplication of the measured {J;} and dither

signals. The signal components {jj(t)} are then separated
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by low-pass filtering (LPF) of the product, as shown in
Fig. 3(a). The obtained signals enter the proportional-
integral-derivative (PID) controllers [32]. The dynamic
processes in the PID control system ideally lead to sta-
tionary steady states of type dj(¢— )=const+2wm;,
where j=1,...,Ng; and {m;} are integers, which corre-
spond to locking of the outgoing-beamlet piston phases.

The major drawback of the phase-locking technique
based on optical path difference stabilization is related to
technical difficulties in the design and alignment of the
phase-locking receiver system composed of an array of la-
ser interferometers. Such an optical system is quite sen-
sitive to various distortions including vibrations, thermal
effects, and acoustical waves that may lead to parasitic
phase shifts that affect phase-locking system perfor-
mance.

These problems can be overcome in the self-reference-
type phase-locking receiver shown in Figs. 2(c) and 3(b).
In this system the lens focuses beamlets into a joint focal-
plane area where all of them overlap, forming an inten-
sity pattern that depends on all uncompensated piston
phases [residual phase shifts {5;(¢)}].

For this receiver system, maximization of the on-axis
focal-plane intensity value leads to ideal phase locking.
Thus, the signal JJ obtained by measuring the light power
inside a small pinhole located in the lens focus can be
used as a measure (metric) of phase-locking system
performance. The measured metric signal
JL&1(8),...,8(), ... ’5Nsub(t)] is a function of all phase er-
rors. Note that this function has an infinite number of
identical global maxima corresponding to phase errors
whose values differ by 27 multiplied by an arbitrary in-
teger number. Phase locking can then be considered as a
process of metric J maximization performed using one or
another optimization technique known in adaptive optics
(multidithering, gradient descent, SPGD, etc.).

As an example, consider the phase-locking controller
based on the multidithering technique, as shown in Fig.
3(b). Each channel of this control system is similar to the
heterodyne phase-locking controller in Fig. 3(a). The im-
portant difference is that small perturbations of phase
shifts (dithering signals) a sin(w;jt) in this system have
different frequencies w;, where a is the dither amplitude
and j=1,...,Ng,;. Input signal (metric J) is multiplied in
each control channel by the corresponding dither signal.
The low-pass filtering of the products allows extraction of
the gradient projections {JJ' }={dJ/ou;} of the metric J. The
obtained metric gradient components {/ J’} are used as the
error signals in the continuous-time gradient descent con-
troller [33]:

dz¢

T = T8, 50, .. Ay, (0]

G=1,....Nyp)- (1)

Here 7 is the characteristic response time of the control
system and {y;} are the feedback gain coefficients. The dy-
namical process (1) leads to optimization of the metric sig-
nal (maximization of the power inside a pinhole) and, cor-
respondingly, locking of the piston phases. The control
method associated with the dynamical process (1) is also
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known as the gradient-flow optimization technique
[34,35].

Consider briefly a phase-locking system based on
SPGD feedback control [3,30]. Note that the phase-
locking receivers in the SPGD and multidithering sys-
tems are identical, while the operation principle is quite
different. In the SPGD control system, optimization of
metric J is performed using an iterative process. At each
nth iteration of this process the controllable piston phases
of the outgoing beamlets {u\™} are simultaneously per-
turbed using a set of small-amplitude random phase
shifts (perturbations) {Au}”)}. The perturbation of the pis-
ton phases results in the corresponding variation AJ® of
the measured metric signal. The piston phases at the (n
+1)th iteration, {uJ(-”+1)}, are then computed using the fol-
lowing simple rule [30]:

(n+1) _  (n) (M)A JIA;, 1)
u" = u + y"AJ " Au;

(j=1y---’Nsub)’ (2)

where Y is the gain coefficient at the nth iteration. It
can be shown that with an appropriate choice of the per-
turbation amplitudes and gain coefficients, the iterative
process (2) leads to metric J maximization [31].

Both multidithering and SPGD techniques require fast
(high operational frequency bandwidth) phase-shifting el-
ements. In the multidithering phase-locking systems,
high-frequency bandwidth of phase-shifting elements is
required for obtaining sufficiently wide separation be-
tween the dithering frequencies {w;}, which is necessary
for prevention of strong cross-coupling between the con-
trol channels leading to a decrease in signal-to-noise ratio
in the gradient projection measurements [28].

In its turn in the SPGD phase-locking technique, the
fast operational speed of phase-shifting elements allows a
high iteration rate and, correspondingly, an increase in
the control system bandwidth. Fortunately, the existing
fiber-integrated phase-shifting elements are sufficiently
fast (> MHz bandwidth) and hence can provide efficient
compensation of relatively slowly varying phase shifts
{Aj(®)} (typically on the order of 101-103 Hz) that are
caused by temperature fluctuations and/or vibrations and
mechanical deformation of fiber elements in the MOPA
system.

Perhaps the most serious drawback of the existing
pupil-plane phase-locking systems is the presence of a
beam splitter (or a beam splitter array) located in front of
the outgoing conformal beam, as shown in Figs. 2 and 3.
This beam splitter is part of the phase-locking receiver
system used for sampling of piston phases of the outgoing
beamlets. For large-aperture fiber-array beam directors,
this receiver system type is quite difficult to implement in
practice since the diameter of a monolithic beam splitter
should exceed the overall diameter D of the entire fiber
array that would require the use of a bulky and expensive
optical element. Such a beam splitter also causes a lateral
shift of the conformal laser beam and can potentially re-
sult in additional phase aberrations, especially for high-
power systems.

The replacement of a monolithic beam splitter with a
beam splitter array does not solve the problem since each
element of this array needs to be mounted onto a separate
holder with tip—tilt alignment capabilities. This makes
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the dense packaging of these beam splitting elements re-
quired for high-fill-factor fiber-array systems difficult.

3. OBSCURATION-FREE PHASE LOCKING
WITH TWO-TAIL SENSORS

A. Piston Phase Sensing Based on Interference of Two
Beam Tails

In this paper we introduce another approach for sampling
of piston phases that does not require splitting of the out-
going conformal beam with a pupil-plane beam splitter.
First, note that each lens in the fiber-collimator array in
Fig. 1(b) clips a central region of the beam exiting the cor-
responding fiber tip. The optical field energy located in
the tail region of this beam (on the order of 8%—10% of the
transmitted laser beam energy [3,19]) is absorbed by op-
tical and mechanical elements of the fiber-collimator ar-
ray and commonly results in undesirable phase aberra-
tions caused by the heat-induced thermal deformation of
optical and mechanical elements and air convection inside
the fiber collimators. In this section we show that the op-
tical field belonging to these beam-tail regions can be uti-
lized for sensing of piston phases of the outgoing beam-
lets.

To illustrate the basic principle of piston phase sensing
using truncated (tail) regions of the beams generated in-
side the fiber-collimator array, consider two neighboring
fiber collimators that are denoted as A; and A, in Fig.
4(a). The tail regions of the corresponding beams overlap
inside a volume region (). This overlapping leads to inter-
ference of the corresponding optical fields, which is re-
ferred to here as two-beam-tail or just two-tail interfer-
ence, to be short.

Consider a plane inside (), which is orthogonal to the
direction oz of laser beam propagation (direction of the op-
tical axis) and located a distance f; from the fiber tips (or
a distance [y=f-f, from the fiber-array pupil plane). The
intensity distribution in this plane depends on the phase
errors 8(¢) and 8(¢) of the interfering beam tails as well
as on the fiber-array characteristics such as beam diver-
gence, propagation distance f;, and the offset distance /
between the neighboring fiber collimators.

Consider a small-size photodetector at the selected
plane S inside (), as shown in Fig. 4(a). We assume that
the photodetector size does not exceed the characteristic
width w of interference fringes (point-size photodetector).
The signal (metric) J 5(¢) registered by the photodetector
is then given by

J1o(8) = 15[ 81(2), 55(0)]
=1+ 1+ 2\T1Iycos[55(0) - 81(8) + {10],  (3)

where I; and I, are the intensity values of optical fields
corresponding to the fiber collimators A; and Ay at the
photodetector, and {; 4 is the static phase term dependent
on the photodetector position at the registration plane.
Thus, the difference between the piston phases of two
neighboring subapertures can be sensed using a single
photodetector located in the area of beam-tail overlap-
ping. We assume for simplicity that the photodetector can
be placed at a point corresponding to {; 9=27m, where m
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Fig. 4. Sensing of piston phases using interference of tail sections of two beamlets in fiber-collimator array systems: (a) schematic il-
lustration of two-tail interference, (b) fiber-array system composed of three clusters (A, B, and C) coupled by two-tail sensors, (c) two-tail
sensing of piston phases in a cluster A composed of seven fiber collimators with hexagonal arrangement, and (d) coupling of three hex-
agonal clusters using two-tail interference sensors. Black squares in (b)—(d) denote point-size photodetectors.

is an arbitrary integer number, so we can omit {; 5 there-
after.

The major advantage of the described sensing tech-
nique, referred to here as obscuration-free piston phase
sensing, is the absence of a beam splitter. Sensing of pis-
ton phases is obtained here without any additional optical
element by simply installing a set of photodetectors that
are located outside the outgoing beamlets.

B. Fiber-Array Cluster

Consider now the subaperture A; as a reference and se-
lect a set of Ny—1 neighboring the reference subapertures
Ag, ..., A, ..., Ay, where No<Ny;, as shown in Fig. 4(b).
The reference and the neighboring fiber collimators (sub-
apertures) are referred to here as a cluster (cluster A). As-
sume that a set of point-size photodetectors are located
inside the overlapping regions of the beam tails corre-
sponding to the reference and neighboring subapertures
of the cluster, as illustrated in Fig. 4(b). For the consid-
ered case of two-tail sensing, the number of photodetec-
tors M coincides with the number of neighboring subap-
ertures Ny—1. Analogously to expression (3), the metric
registered by the jth photodetector,

J1j(0) =J1 181(8),8()] = I, + I; + 2\1,; cos[ 8,(t) — &,(t)]

(j=2>"-7N0)7 (4)

depends solely on the differences 8;(¢) - 6(f) between the
piston phases d;(¢) and 8;(¢). In Eq. (4), I; describes the in-
tensity of the optical field component associated with the
Jjth subaperture. For simplicity we ignore here the contri-
butions to the metric signal /1 j(¢) from the beam tails be-
longing to remote subapertures, assuming that these con-
tributions are sufficiently small due to a sharp drop in the
intensity of the Gaussian beam with the distance.

C. Phase Locking of a Fiber-Array Cluster via Gradient-
Flow Control

Consider the fiber-array cluster A in Fig. 4(b). Within this
cluster, the optical field belonging to the beam tail of the
fiber collimator A; plays the same role as the reference
field in the phase-locking system based on the interfero-
metric (heterodyne) type receiver discussed in Section 2
and shown in Figs. 2(b) and 3(a). Correspondingly, phase
locking of the fiber collimators belonging to the fiber-
array cluster can be performed using the heterodyne tech-
nique described above. As already mentioned in Section 2,
this control strategy is equivalent to the continuous-time
gradient descent or the gradient-flow optimization (con-
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trol) of the measured signals {J;;(&;,8)} (local metrics)
corresponding to neighboring subapertures.

With this control technique, the dynamics of the phase-
locking process inside a single cluster can be described by
the following set of equations:

dsr)
dt

G=2,...,Ng), (5)

T

=51 161(8),8(2)]

where  J7 [81(), 5(t)]=sin[81(¢) - §(t)]=sin[A; +uy () - A;
-uj(t)] are the derivatives (gradient components) of the
local metric signals (4) over the phase errors {5,(¢)}, and
{7} are the feedback gain coefficients. Note that since the
beam tail of the fiber collimator A; is used as a reference,
the phase u(¢) does not have an impact on the phase-
locking dynamics of the cluster and hence can be arbi-
trarily chosen, e.g., set to zero. In Eqgs. (5) we assumed
that during the transition (phase-locking) process with
the characteristic control system response time 7, the
phases {Aj(t)} can be considered stationary, that is, A;(#)
=A; for all j=1,...,N,.

The signals JiJ=sin[A1—Aj—uj(t)] in Egs. (5) can be ob-
tained using heterodyne-based synchronous detection sig-
nal processing, as in Fig. 3(a). It can be easily shown that
a steady-state solution of the system of equations (5) can
be represented in the form {&(¢— «)}=mody.(5;)
=mody,(A;) that corresponds to the phase-locked state.

As an example of the phase-locking-process dynamics,
consider a fiber-array cluster composed of seven fiber col-
limators with hexagonal arrangement as shown in Fig.
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4(c). Equations (5) are numerically integrated over a time
interval T=107 using the fourth-order Runge-Kutta
method [36]. The initial values of the phase errors are as-
sumed to be random with uniform probability distribution
within the interval [-7,7]. An example of temporal evo-
lution of phase errors §i(t), j=1,...,7, is shown in Fig.
5(a). Phase locking here corresponds to the transitioning
to the steady-state solution &(¢ — )= 6, occurring during
the time interval T'~57. Note that with the increase of
the initial phase error amplitudes, the transitioning to
the stationary steady state is commonly accompanied by
27 jumps in phase error values. In Fig. 5 these 27 phase
jumps are removed.

As a phase-locking performance metric, consider the
ensemble-averaged sum of squared phase error deviations
from the reference phase §;=A;=const,

No=7

: > I8t -6 ). (6)

0~ 1 j=2

a5(t) =

The ensemble averaging, denoted by the angular brackets
in Eq. (6), is performed over 1000 random realizations of
initial phase shifts. The results of numerical simulations
are presented in Fig. 5(b) as time dependence of the stan-
dard deviation o4t). As can be seen, phase-locking control
results in nearly 10%-fold decrease of o5 during time inter-
val T~8r.
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Fig. 5. Phase locking based on the gradient-flow optimization control in a fiber-array system with two-tail sensors for (a), (b) a single
cluster and (c), (d) two coupled clusters shown in the top-right inserts in (b) and (d). Temporal dynamics of phase errors {5(¢)} from
random initial conditions {§,(0)} in (a) and (c) and the ensemble-averaged phase-locking error standard deviations o4¢) and a{}*ﬁ(t) in (b)
and (d) are obtained by numerical integration of Egs. (5) with y,=1, j=2,...,7, and Egs. (7) and (8) with yf:yf:l, j=1,...,7, and
¥aB=7v8a=0.5, respectively. The reference phase 8, is shown by the horizontal line in (a). The insert in (c) illustrates an initial stage of

the phase-locking process.
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D. Coupled Fiber-Array Clusters

Consider now phase locking of a fiber-array system com-
posed of a set of clusters. As an example, a fiber-array sys-
tem containing three mutually coupled clusters (denoted
as A, B, and C) is shown in Fig. 4(b). The question to ask
is how can these clusters be locked together?

Note that phase locking of different clusters requires
sensing of phase errors for beamlets belonging to different
clusters. This can be achieved using beam tails belonging
to different clusters, shown in Fig. 4(b). The photodetec-
tors and the corresponding metric signals (such as met-
rics J 4 p and J ) that are used for inter-cluster coupling
define the coupling node. For example, in Fig. 4(b), inter-
coupling of clusters A and B is achieved using the subap-
ertures A, and By, while clusters A and C are connected
through the subapertures A, and Cs. Note that the same
clusters can be connected using several coupling nodes. At
the same time, phase locking of the entire fiber array does
not require a direct connection between all clusters in the
array. For example, in Fig. 4(b), clusters B and C are not
directly coupled (although this coupling can be intro-
duced, e.g., by using the subapertures Cy and B;). Cou-
pling between those clusters is achieved indirectly using
the sensing nodes coupling these two clusters with the
cluster A.

E. Dynamics of Coupled Fiber-Array Clusters
The mathematical model describing the phase-locking
process in a fiber-array system composed of several
coupled clusters (cluster network) can be obtained by in-
troducing the following changes to the system of equa-
tions (5). First, the mathematical model for the cluster
network should include additional equations describing
dynamics of phase errors corresponding to the reference
beams. In Fig. 4(b) these are the phase errors correspond-
ing to fiber collimators A;, B;, and C;. Second, the equa-
tions for coupling nodes in each cluster should include ad-
ditional terms that depend on the inter-cluster metrics
[such as, for example, metrics J5 g and J4 ¢ in Fig. 4(b)].
For the sake of simplicity, consider the system with
only two clusters (A and B) composed of N4 and NE fiber
collimators, respectively. Assume that each cluster has a
single coupling node: one corresponding to the subaper-
ture ¢ (cluster A) and another to the subaperture £ (clus-
ter B). With the introduced notation, the mathematical
model describing the phase-locking process in this system
can be represented in the following form:

i)
—C ¥} sin[8)(t) — X)) + Kjyap sin[ 55 (2) - 5()]
(i=2,...,N%, (7a)
a1 M
RO S =gl
dsi(e)
" yJB sin[ 82(¢) - 5]]-3(15)] + KjrYBA sin[83(¢) - @B(t)]
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(G=2,...,ND), (8a)

T

sk 13
TR 12 «p sin[83(£) - 87(¢)]. (8b)
07~ +y=2

Here «j;=1 for i=j and zero otherwise, and @A’B(t) and )/JA’B
are, respectively, the phase errors and the gain coeffi-
cients for either the A or the B cluster. The coefficients
A and yga in Egs. (7a) and (8a) describe the inter-
cluster coupling strength. The dynamics of phase errors
in cluster A is described by Eqs. (7) and in cluster B by
Eqgs. (8). Equations (7b) and (8b) correspond to the phases
of the reference beamlets.

It is easy to show that the system of equations (7) and
(8) has the following stable steady-state solutions:

SNt — ) =mody {8}t — )] (=2, ...,Ng), (9a)
&t — ) =mody {8t — )] j=2,...,Ng), (9b)

8t — ) = mody [ 85t — =)]. (9c)

These solutions correspond to locking of phases both in-
side each cluster [Eqgs. (9a) and (9b)] and between the
clusters [Eq. (9¢)].

Consider first weak inter-cluster coupling and assume
that in Egs. (7) and (8) )/JA=)/JB=')/J~ and yAp=v8A<7 In
this case, the dynamics of phase errors can be described
as a two-stage evolution process. The first stage is char-
acterized by a relatively fast locking of phases within
each cluster. This process occurs during the time interval
0<t¢<t;. At the end of this stage the piston phases are
nearly locked within each cluster, so that @A(tl)
Emodgﬁ[ﬁf‘(tl)] and @B(tl)zmodzw[élf(tl)]. Correspond-
ingly, the system of equations (7) and (8) can then be re-
duced to the following two equations describing the sec-
ond stage of the phase-locking process—a relatively slow
decrease of the phase difference between two clusters:

dae)
T T AB sin[;(¢) - 58], (10a)
d&(t)
T = YAB sin[31(¢) - op(1)]. (10b)

This inter-cluster phase locking occurs with a character-
istic time that is significantly longer, on the order of
yaB! v <1.

An example of the phase-locking dynamics in the sys-
tem with two clusters composed of N5 =Nb5="7 fiber colli-
mators is illustrated in Figs. 5(c) and 5(d). The geometry
of the system is shown by the insert in Fig. 5(d). The clus-
ters are coupled through a single node (subapertures Aj
and Bj) with the gain and coupling coefficients yf: yJB =v,
J=1,...,7, yAB=YBA=7. and 7,/y=0.5. As can be seen
from Fig. 5(c), the in-cluster phase locking nearly ends at
T~ 617 (see the insert), while the inter-cluster phase lock-
ing occurs over a significantly longer time, 7~1007.

Time dependence of the ensemble-averaged phase error
metric o?JrB(t) that is described by an expression similar
to Eq. (6) but includes all 14 participating subapertures is
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shown in Fig. 5(d). An initial sharp decrease in the phase
error metric a'§+B(t) at t~4r7 is associated with the in-
cluster phase locking—the first stage of the system dy-
namics described above. The numerical simulations show
that with an increase of the ratio v,/ y up to unity, both in-
and inter-cluster phase locking occur on nearly the same
time scale, which corresponds to the optimal scenario,
while a further increase of the ratio y,/y leads to a rela-
tively weaker in-cluster coupling and the corresponding
slowdown of the overall phase-locking dynamics.

F. Phase Locking via SPGD Optimization
The obscuration-free pupil-plane phase locking can also
be achieved using direct optimization of measured signals
(metrics), as described in Section 2. In this control ap-
proach, signals from a set of photodetectors can be used
as local metrics, or, alternatively, these metrics can be
electronically combined into a single phase-locking perfor-
mance metric.

To illustrate, consider a signal (local metric)
J1 k[ 6,(t), 8(t)] measured with a two-tail interference sen-
sor coupling two neighboring subapertures [ and k. Simi-
larly to Eq. (4), for the local metric we have

J1p®) =Tl 80, 5,0 = I + I+ 2L, cos[ 5,(t) - &,(¢)]

(k=1,....No; k #1). (11)

Assume that a metric Jx(¢) (global or combined metric) is
obtained by electronically combining M local metrics,

M
Js(t) = D Tl 81, 8,0)]. (12)
k>l

The set of sensors and the corresponding signals (local
metrics) that are included in the sum (12) can be differ-
ent, but optimization of the combined metric Jx(¢) can
lead to the phase-locked state only if this metric depends
on the phase errors of the entire fiber-array system: Jx
=Js[61(), ..., oy, ()]

The phase locking based on the SPGD control can be
performed using optimization of either local metrics J;,
or the combined metric Js. Similarly to Eq. (2), one can
easily derive the corresponding SPGD control update
equations for both phase-locking system types. In the case
of the combined metric we have

& = 8+ YWATPASY  (7=2,...,Ny;n=1,...),
(13)

where AJ(E”) is the metric perturbation in response to con-
trol signal perturbations {Aé}-n)}, and 7(2”) is the gain coef-
ficient at the nth iteration. Note that the subaperture j
=1 is considered here as a reference.

For the phase-locking control system based on SPGD

optimization of the local metrics we have
&= 8"+ Y IAJVIASY  (j=2,...,No; n=1,...),
(14)

where {AJ (ﬁ])} and {y(-”)} are, respectively, the local metric
perturbations and tllle gain coefficients at the nth itera-
tion. The control rule (14) describes a set of weakly
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coupled identical SPGD optimization processes operating
in parallel. Note that the control loops in Eq. (14) are
coupled only through a piston phase corresponding to a
reference subaperture (j=1). This control algorithm rep-
resents a clone of the SPGD optimization algorithm
known as the decoupled SPGD (D-SPGD) control [37].
As an example of phase-locking control based on SPGD
and D-SPGD optimization approaches, consider the fiber-
array configurations composed of a single cluster as in
Fig. 4(c). The numerical simulations results are presented
in Fig. 6. Evolution of the phase errors during the SPGD
and D-SPGD iteration processes (13) and (14) with iden-
tical random initial conditions {5j(t=0)}={é§0)} for both
cases are shown in Figs. 6(a) and 6(b), respectively. The
phase-locking process convergence occurs significantly
faster (approximately eight-fold) with parallel optimiza-
tion of the local metrics using D-SPGD controller (14). A
similar conclusion can be made based on analysis of the
normalized ensemble-averaged phase-locking perfor-

mance measures <Jg(t)>E(Jg(t)>/Jg and o) in Figs. 6(c)
and 6(d), where Jg is the combined metric corresponding
to zero phase errors. Numerical analysis of the phase-
locking process in the fiber-array system composed of two
clusters as in Fig. 5(d) also demonstrated significantly
faster convergence in the case of parallel optimization of
the local metrics [D-SPGD controller similar to Eq. (14)].

4. PUPIL-PLANE PHASE LOCKING WITH
THREE-TAIL SENSORS

A. Piston Phase Sensing Based on Interference of Three
Beam Tails

Piston phase sensing based on the two-tail interference
technique requires at least N,;,— 1 sensors. For a fiber ar-
ray with a large number of fiber collimators N,,;, the cor-
responding sensor network can be quite complicated.

The number of sensors can be significantly reduced us-
ing the three-tail interference sensing technique de-
scribed in this section. In this approach, photodetectors
are placed in the overlapping region of beam tails belong-
ing to three neighboring subapertures, as shown in the in-
sert in Fig. 7(a). Note that sensing of piston phases in the
array of seven fiber collimators in this figure requires
three photodetectors [small gray circles in the insert in
Fig. 7(a)] for the three-tail and six photodetectors [black
squares in the insert in Fig. 5(b)] for the two-tail interfer-
ence technique. In addition, as can be seen from these fig-
ures, the physical space available for the photodetectors
is sufficiently larger in the three-tail interference sensing
technique.

To obtain an analytical expression for the signal (met-
ric) registered by a three-tail interference sensor, consider
the neighboring subapertures A;, A, and A,, and a point-
size photodetector located inside the overlapping region of
the corresponding beam tails. Similarly to expression (3),
the metric signal (with accuracy to a constant multiplier
and a phase shift dependent on the photodetector posi-
tion) is given by

J1em(®) =) gl 6(8), 6(2), 5,,(2)]
=112 expli&(t)] + IV? explid,(2)]
+ 112 expli s, (t)]?, (15)
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Fig. 6. Pupil-plane phase locking of the fiber-array cluster system as in Fig. 4(c) with two-tail sensors using optimization of (a), (c) the
combined and (b), (d) the local metrics. Dynamics of the residual piston phase errors {§(t)}, j=1,...,7, from an identical set of random

initial conditions in (a) and (b) and the ensemble-averaged phase-locking performance metrics (J;(t)) and o4t) in (¢) and (d) are obtained
using the control algorithms (13) and (14), respectively. Reference phase &; is shown by the horizontal lines in (a), (b).

where I}, I, and I,, are intensities of the corresponding
optical fields at the photodetector location. Considering
an optical field of the /th fiber collimator as a reference,
represent Eq. (15) in the following equivalent form:

= 1|1 + py, expli&y(t) — 1 8(t)] + iy, €xpli 5, (¢) — i5(8)]
= 211{1“’(2) + U COS[&k(t) - 5l(t)] + MUy COS[5m(t) - 5[(”]

+ [y, €OS[ B, (1) = 6,,(1)]}, (16)

where ,u,zezlklll, ,u,%lzlmlll, and ,u,%z(1+,u£+,u3n)/2 are the
coefficients dependent on the intensities I}, I, and I,,,, and
8,(t) - 8(t) and 5,,(t)- §(t) are the differences between the
phase errors of the reference, the /th, and the neighbor-
ing, kth and mth, subapertures. For simplicity we as-
sumed that during the phase-locking process the piston
phases A; can be considered as stationary, so that d&(t)
=u(t)+A;, where j=1,...,Ny;.

B. Phase Locking via Combined Metric Optimization
The most straightforward approach for the fiber-array
phase locking using three-tail interference sensors is op-
timization of a combined metric Jx(¢) composed of elec-
tronically summarized signals (metric components)
J1 1m0, 8, 8y). Note that the combined metric Jx(¢) may
also include additional metric components J, ,(5,,5,) ob-
tained with two-tail interference sensors. Along with the
three-tail sensors, these extra sensors can be used, for ex-
ample, to interconnect fiber-array clusters, analogous to
those in Fig. 4(d).

Consider a combined metric composed of K signals ob-
tained using three-tail and M signals obtained with two-
tail interference sensors:

K M
Is(t)= D Jipmldt),80), 8,0+ X, I, ,L8,(2),8,)].
m>k>l p>q

17

From Eqs. (11) and (16) it is easy to see that the maxi-
mum values of terms J;4 ,,(5;, 8,8,) and J,,(5,,5,) in
Eq. (17) are achieved when the differences between the
phase errors &, 9, and & for three-tail and between &,
and &, for all two-tail sensors are equal or differ by an in-
teger multiple of 27. This means that in the case when all
subapertures are interconnected, the global maximum of
the combined metric (17) corresponds to the phase-locked
state. Full interconnection means that differences &
—&,,» between the phase errors for arbitrarily chosen sub-
apertures £’ and m’ can be represented as a sum of the
phase differences that are present in expression (17).

To illustrate the combined metric-optimization-based
control, consider the fiber arrays with three-tail interfer-
ence sensors, as shown in Fig. 7(a).

In the numerical simulations the following composed
metric corresponding to three sensors is considered:

Jy =Jq,93(81,00,03) +J1,45(81,84,05) + J1,6,7(81, 5, 67).
(18)

The metric Js is optimized using the SPGD control algo-
rithm (13). The phase-locking performance is estimated
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Fig. 7. Phase locking of a fiber array [shown in the insert in (a)]
using local metrics obtained with three-tail sensors. Time depen-
dences of the ensemble-averaged phase-locking performance

measures (Jx(¢)) and ost) using (a) optimization of the combined
metric with SPGD (dashed lines) and local metrics with D-SPGD
(solid lines) control algorithms and (b) the gradient-flow optimi-
zation algorithm (19).

using the normalized ensemble-averaged values o s)
= (Jx)/Jg and the phase-locking error standard deviation
os(t) [see Eq. (6)]. The results are presented in Fig. 7(a) by
the dashed lines.

Note that in most cases of the fiber-array systems ex-
amined, the control approach based on optimization of
combined metrics [metrics (12), (17), and (18)] provided
transitioning to the true phase-locked state. At the same
time the numerical simulations demonstrated certain dis-
advantages of this control algorithm. In comparison with
the parallel optimization of an array of local metrics dis-
cussed in Subsections 3.C-3.F for two-tail sensor net-
works, the use of combined metric optimization results in
significantly slower convergence speed and on average
lower accuracy in locking of piston phases.

This behavior can be explained by the potential exis-
tence of a number of local maxima of the combined metric,
which is rather common for optimization of functions that
are dependent on a large number of control variables.

C. Optimization of Three-Tail Local Metrics with
D-SPGD Controller

Consider a phase-locking control algorithm that utilizes
measurements obtained with three-tail sensors but pro-
vides better phase-locking accuracy and faster transition-
ing process convergence.
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By way of example, assume that a fiber-array system is
composed of seven fiber collimators and three sensors, as
in the insert in Fig. 7(a). The local metrics /1 5 5(51, 82, 83),
J1.45(61,84,85), and Jy67(81,0,05;), measured by these
sensors, depend on all seven phase errors &, j=1,...,7. At
the same time, for a fixed value of the reference phase &,
each local metric depends on only two independent phase
errors. Since each of the metrics depends on the reference
phase, independent maximization of the local metrics
J1,2,3, J1,4,5 and Jy g 7 results in locking of piston phases
of all seven subapertures.

Maximization of the local metric can be performed ei-
ther sequentially or in parallel using, for example,
D-SPGD, multidithering, or heterodyne techniques.

The D-SPGD phase-locking control system for the fiber-
array system with three-tail sensors as in Fig. 7(a) is com-
posed of three identical subsystems that are described by
the iterative equations similar to Eqs. (14) obtained for
the two-tail sensors. The difference from the control rule
(14) is that the identical metric perturbation value
(AJ({’%,S, AJ({,‘iﬁ, or AJ({%F) is used to update controls in
two neighboring subapertures coupled by the correspond-
ing three-tail sensor.

Dynamics of the phase-locking system based on
D-SPGD optimization of local metrics obtained with
three-tail sensors is illustrated in Fig. 7(a) by solid lines.
In comparison with optimization of the combined metric
(dashed lines), the phase-locking control based on local
metric optimization provides significantly faster conver-
gence speed.

D. Gradient-Flow Control with Three-Tail Sensing
Consider now phase locking based on the gradient-flow
optimization of the local metrics measured with the three-
tail sensors. The gradient components of the local metrics
that are required for the gradient-flow optimization can
be obtained using the multidithering technique. To illus-
trate, consider as an example three neighboring subaper-
tures Ay, Ay, and Ag, corresponding to a single three-tail
sensor in the fiber-array cluster with seven subapertures
as in Fig. 7(a). The sensor output signal—the local metric
J1,2,3(81, 8, 83)—depends on the phase errors &;, &, and
83 corresponding to these subapertures. Assume that
single-frequency dither signals a sin(wt) and a cos(wt) are
applied to the phase shifters corresponding to the second
and third subapertures, thus resulting in modulation of
the errors & and &3 and perturbations of the local metric
J12.3(81, 82, 3). We assume that dithering amplitude a is
small (e <1) and that frequency o exceeds the character-
istic frequency bandwidth of piston phase variation in the
fiber-array system.

It can be easily shown that using the heterodyne detec-
tion technique discussed in Section 2, one can electroni-
cally obtain the gradient components &J; 5 5(61, 82, 83)/ 95,
and (9:]1,2’3(51 , 52 ’ 53)/(953 of the metric J1’2’3(51 ’ 52, 53)
Note that the identical dithering signals can be used for
measurements of the gradient components for the local
metrics J1,4,5(51 , 54 , 55) and Jl,6,7(51 N 567 57)

Similarly to Eqgs. (5) for the fiber-array cluster with
two-tail sensors, phase-locking control can be imple-
mented using the gradient-flow optimization algorithm.
For the fiber-array system with three sensors as in Fig.
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7(a), the corresponding gradient-flow control is described
by a set of the following equations:

dsi(t) 31 jje1

Tar TV s
= y{sin[81(¢) - &(#)] + sin[ ;1 (¢) - () ]},
(19a)
d5j+1(t) _ aJl,/‘,/'+1
Ta T,
= ¥j,1{sin[81(¢) = 8.1 (8)] + sin[ (¢) - §.1() ]},
(19b)

where j=2,4,6 and {y;} are the feedback gain coefficients.
In derivation of the gradient components in Egs. (19) we
used the three-tail signal representation in the form of ex-
pression (16).

It is easy to show that equations (19) have a stable
steady-state solution corresponding to the phase-locked
state. The phase-locking dynamics in this system are il-
lustrated in Fig. 7(b). The drawback of phase-locking con-
trol based on the gradient-flow optimization is related to
an additional complexity of the control electronics that re-
quires dithering and heterodyne filtering of the local met-
ric gradients in comparison with the SPGD control.

5. PHASE LOCKING BASED ON
FOCAL-PLANE BEAM-TAIL SENSORS

A. Focal-Plane Beam-Tail Interference

In our analysis we assumed that the size of photodetec-
tors in the beam-tail interference sensors does not exceed
the characteristic width w of either interference fringes
for the two-tail or bright and dark spots for the three-tail
sensor. In both cases value w can be estimated from the
well-known expression w=A\(fy/l) describing the width of
the interference fringes formed at a distance f,~f in
Young’s experiment with two point light sources that are
separated by a distance [ [38]. In our case [ is the distance
between two neighboring fiber tips, and f; is the distance
between the fiber tips and the plane of the photodetectors,
as in Fig. 4(a).

Note that in practical fiber-array systems the collimat-
ing lens focal distance f may exceed the separation dis-
tance [ by only a few times (e.g., f/[~5 in [3]). Corre-
spondingly, the characteristic spatial scale w in these
systems can be as small as a few micrometers. Since the
size of photodetectors and the accuracy in their position-
ing should be smaller than w, practical implementation of
the two- and three-tail interference sensors may present a
challenging problem.

This technical problem can be overcome relatively eas-
ily by focusing beam-tail sections associated with the
same sensor onto a common focal region (focal spot) using
a specially designed combined focusing element (CFE)
composed of an array of off-axis focusing elements (mir-
rors), as shown in Fig. 8(a) [39]. The focal spots are lo-
cated a distance fgpg from the CFE.

The off-axis focusing mirrors of the CFE can be made
on (or integrated into) a common substrate with a set of
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Fig. 8. Phase locking based on focal-plane beam-tail interfer-
ence sensors: (a) notional schematic of the focal-plane beam-tail
sensor and (b) geometries of off-axis focusing mirrors (M) corre-
sponding to two- and three-tail focal-plane sensors. Grayscale
images are examples of focal-plane intensity distributions ob-
tained using the parameters of the experimental fiber array re-
ported in [3]. Small circles at their centers show photodetector
apertures.

holes that are large enough to prevent obscuration of the
corresponding collimating lens aperture. This combined
focusing element can be manufactured using, for ex-
ample, the diffractive optics technique [39]. The CFE can
be shifted back from the fiber-array pupil plane, thus cre-
ating additional space for the off-axis focusing mirror seg-
ments that can be required for fiber-array systems with
high fill factor.

An example of the off-axis mirror geometry for two- and
three-tail sensors is shown in Fig. 8(b). In this picture the
off-axis focusing mirrors My ; and M; 5 of the neighboring
subapertures A; and Ay have a common focus at the point
P a distance fopg from the CFE. Similarly, the mirrors
M; 93, Mg 31, and Mg ; o of the three-tail focal-plane sen-
sor focus beam-tail sections of the corresponding subaper-
tures A;, Ay, and A3 onto a common focal spot.
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The characteristic size of the focal spot central lobe bp
is proportional to the distance fopg between the CFE and
the plane of photodetectors and hence can be increased by
arranging photodetectors at the rear plane of the fiber ar-
ray. Examples of the intensity patterns formed at the fo-
cal plane of the two- and three-tail sensors are shown in
Fig. 8(b) for both random and phase-locked states.

In the numerical simulations the CFE consists of an ar-
ray of off-axis parabolic mirrors in the form of 60-deg an-
nular segments for two-tail and 120-deg annular seg-
ments for three-tail focal-plane sensors. Note that other
types of aspheric mirror surfaces, e.g., elliptical, can in
principle be utilized as well. As seen from the focal-plane
intensity patterns in Fig. 8(b), phase locking results in
maximization of the peak intensity value at the photode-
tector location (white circles at the centers of grayscale
images).

B. Phased Array with Focal-Plane Beam-Tail Sensors:
Wave-Optics Model

In our previous analysis we assumed for simplicity that
sensing of phase errors is performed using two- or three-
tail sensors with infinitesimally small-size photodetectors
(point-size detectors). This assumption allowed us to ob-
tain simple analytical expressions describing the depen-
dence of measured signals (metrics) on phase errors [see
Egs. (11) and (16)]. At the same time the actual size (ap-
erture) of the photodetector or a pinhole located in front of
it as in Fig. 8(a) can significantly affect phase-locking sys-
tem performance, including control process stability,
phase-locking bandwidth, and accuracy.

In this and the following subsection we consider a more
realistic case of obscuration-free pupil-plane phase lock-
ing using focal-plane beam-tail sensors with finite-size
photodetectors. In this case the dependence of the mea-
sured signals (metrics) on phase errors cannot be ob-
tained analytically, and therefore performance analysis of
phase-locking systems requires wave-optics simulations
of the entire optical train from the fiber tips to the off-axis
focusing element and further to the plane of the photode-
tectors.

As an example of such analysis, consider the coherent
array of N,;,=7 fiber collimators as in Fig. 1(a). Assume
that the complex amplitudes of the outgoing beamlets’ op-
tical fields right before the collimating lenses can be rep-
resented in the form of diverging Gaussian beams propa-
gating along the optical axis (oz direction) centered at the
coordinates r;, that is,

Aj(r-rj,t) =Ay(r - rj)exp[- ik|r - rj|2/2f+ i6,(t)]

(j=17 "‘7Nsub)7 (20)

where Ag(r-r;)=A4A, exp(—|r—rj|2/a(2)), ag is the Gaussian
beam characteristic width parameter, Aj>0 is a constant,
f is the collimating lens focal distance, k=27/\, and \ is
the wavelength.

To simplify the analysis, assume that the combined fo-
cusing element is located directly behind the fiber-array
collimating lenses at the plane z=0 and focuses the tail
sections of the divergent Gaussian beam to the distance

fere-
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Consider a single off-axis mirror segment that focuses
the /th region of the jth beam tail to the kth photodetector
located at the plane z=—fcpg with the center at the coor-
dinate vector r,. The reflection coefficient of this off-axis
mirror segment can be described by a stepwise function
Vi(r-r;) that equals unity inside the mirror segment re-
gion ; and zero otherwise. In the numerical simulations
this region is defined by an annular segment adjacent to
the jth subaperture with the outer diameter / and the in-
ner diameter d.

With the introduced notation, the complex transfer
function of the off-axis mirror element can be represented
in the form

T7"(r,xj,r4,t) = Vi(r - rp)exp[- ig(r - 1;,f)
+ip(r —rp.fere)], 21

where o(r,f)=—k|r|?/(2f) is the parabolic phase of the
Gaussian beam (beamlet) at distance f from the fiber tip.
In this expression, the presence of the phase term —o¢(r
-r;,f) in the transfer function (21) leads to cancellation of
the parabolic phase of the divergent Gaussian beamlet at
the CFE plane, while the second phase term ¢(r
—-rp,fcrr) in Eq. (21) results in formation of an optical
wave reflected from the mirror segment with convergent
parabolic phase with focus at the point (r;,z=—fcpg), the
point of the photodetector location.

The complex amplitude AICFE(r,rj,rk,t) of the jth beam
tail reflected off the /th mirror at the plane z=0 toward
the kth photodetector is therefore given by the following
expression:

ATTE(r,r,m,) = Ag(r 1) Vi(r ~ 1)
X explie(r — 1y, fopg) +15(t)]
= AICFE(ryrj9rk)exp[i é](t)]r (22)
where AZCFE(r,rj,rk) is the time-independent component
of the beam-tail complex amplitude. At the photodetector
plane z=—fcpg, the corresponding complex amplitude can

be expressed through the Fresnel diffraction integral [38]
as

ik

AIPD(r>rj7rk9t) == 9 exp(lkaFE) fAlCFE(r/>rj7rk7t)

CFE
Xexp[-ig(r' - r,fopr)ldr’

= AP (r,r;,r))explis(t)], (23)

where AIPD(r,rj,rk) is the time-independent optical field
component.

The optical field at the kth photodetector represents
the sum of all the contributing beam tails. For both the
two- and the three-tail interference sensors considered,
each beamlet contributes only one tail section to this field.
Correspondingly, in Eq. (23) index [ can be associated
with one of the beamlet indices j and hence can be omit-
ted. The intensity distribution at the plane of the £th pho-
todetector is then given by
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N, 2

B0 = | 3 AP rpexplis, 0| , (24
I=1

where N, ,=2 for the two-tail and N,,=3 for the three-tail
focal-plane sensors. The indices [, in Eq. (24) identify the
neighboring subapertures that contribute their beam-tail
sections to the optical field at the plane of 2th photodetec-
tor. The signal (local metric) J,(¢) measured by the kth
photodetector can be obtained by integrating Eq. (24) over
the finite aperture of radius bpp centered at ry:

Jk(t)=f LP(e,t)d%(r — r), (25)
S

PD

where Spp=mbpp. It is easy to show that for the point-size
photodetector the local metric value obtained from Eq.
(25) is equivalent to Eq. (16) used in the analysis in Sec-
tion 4.

C. Wave-Optics Simulations of Phase-Locking Process
Performance

Consider the results of wave-optics numerical simulations
of the phase-locking system based on local metrics optimi-
zation (D-SPGD controller) for the fiber-array system
composed of seven fiber collimators as in Fig. 4(b) with
three-tail focal-plane sensors. The parameters of the sys-
tem correspond to the fiber-array system described in [3]:
d=27 mm, ay=0.45d, [=1.37d, f=5.5d, A\=1.06 um. The
CFE consists of N,;, =7 subapertures (circular holes of di-
ameter d) and nine off-axis parabolic mirror segments in
the form of 120-deg annular zones, as shown in Fig. 9(a).
Each three adjacent mirrors, denoted in the figure by the
areas with identical fills, have a common focus at fopg
=8.9d. The CFE is located at the fiber-array system pupil
plane (lcpg=0).

In the numerical simulations, the metrics (25) are opti-
mized using the D-SPGD control algorithm described in
Subsection 4.C. Similarly to the analysis for the point-size
photodetectors, the phase-locking performance is esti-
mated using both the normalized ensemble-averaged pa-

rameter (Jg>=<Jz)/Jg and the phase-locking error stan-
dard deviation o [see Eq. (6)], where Jy=J;+Jg+J35 and
Jg is the metric value corresponding to zero phase errors.
Averaging is performed over 100 random realizations of
initial piston phases.

The numerical simulation results are shown in Fig.
9(b) for the point-size photodetector (bpp=0, solid lines)
and for the photodetectors of two different sizes: bpp
=bpiry/2 (dashed lines), and bpp=>0 iy (dot-dashed lines),
where b4;y=1.22\(fcpg/l) is the Airy disk radius for the
focusing element with aperture of diameter [ (the outer
diameter of the mirror segment) and focal distance fcpg.

As can be seen, the normalized metrics (JZ) converge to
their optimal value independently of the size of the pho-
todetector. Nevertheless, the phase-locking error os—the
true characteristic of phase-locking performance—is quite
sensitive to the photodetector size. The achieved value of
osincreases with the increase of the photodetector aper-
ture size.
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Fig. 9. Phase locking with focal-plane beam-tail sensors: (a)
schematic of the combined focusing element for three-tail focal-
plane sensing used in numerical simulations (left), phase pattern
of the complex transfer function argument in Eq. (21) corre-
sponding to three off-axis parabolic mirrors with a common focal
spot (top-right), intensity distribution of the beam tails at the
CFE plane (middle-right), and intensity distribution at the focal

plane (bottom-right); (b) metrics (Js) and o versus the iteration
number n for three different photodetector aperture radii: bpp
=0 (solid lines), bpp=by;,/2 (dashed lines), and bpp=0b,;,, (dot-
dashed lines). The dashed circle in (a) indicates the Airy disk of
diameter 2b,jy.

6. CONCLUSION

In this paper we introduced and analyzed several control
techniques and system architectures that can be used for
phase locking of the outgoing laser beams (beamlets) that
are generated at the pupil plane of a coherent fiber-
collimator array (pupil-plane phase locking). The tech-
niques considered are based on sensing of piston phases of
the outgoing beamlets using an interference of periphery
(tail) sections of these beams prior to these tail sections
being clipped by the fiber-collimator lens apertures. Since
these beam-tail interference sensors are located outside
the fiber-collimator optical train, the phase-locking meth-
ods do not require installation of any external optical el-
ements at the optical train of the operating fiber-array
system. From this viewpoint the fiber-collimator array
with the obscuration-free phase-locking system described
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can be considered as a new type of a coherent laser beam
director system that does not require a bulky optical
beam expander (telescope) in order to increase the outgo-
ing laser beam aperture. This conformal beam director
can also include additional capabilities for adaptive optics
compensation of phase aberrations caused by the outgo-
ing conformal beam that are directly integrated into each
fiber collimator of the fiber array.

Among potential challenges for practical implementa-
tion of the obscuration-free pupil-plane phase-locking
techniques described, we can mention strict requirements
on positioning and alignment of photodetectors in the
two- and three-tail interference sensors as well as the po-
tential presence of additional static piston phase aberra-
tions related, for example, to non-common path errors
caused by the variations in the optical thickness of the
collimating lenses and/or non-optimal positioning of the
beam-tail focusing mirror elements. These unsensed
static phase shifts cannot be detected by the beam-tail in-
terference sensors. Nevertheless, they can be evaluated
by measuring piston phases of the outgoing beamlets dur-
ing the closed-loop operation of the phase-locking system
described. These measurements require an external
wavefront sensor placed in front of the fiber array, such as
for example in Fig. 2. However, after these measurements
are completed, this external wavefront sensor can be re-
moved. The measured static phase errors can be precom-
pensated, e.g., by using glass plates with calibrated thick-
ness or liquid crystal (LC) phase-shifting elements (LC
cells) that are positioned in the optical train of the outgo-
ing beamlets right after they exit the collimating lenses
[see Fig. 1(a)l. Another option that does not require an ex-
ternal compensating element is related to calibrated, in-
tentional displacements of the beam-tail-sensor photode-
tectors. In the operating phase-locking system, these
displacements result in the appearance of additional
phase shifts of the outgoing beamlets, as discussed in
Subsection 3.A [phase shifts ¢ in Eq. (3)]. Optimal posi-
tioning of the photodetectors aiming at the precompensa-
tion of these phase shifts can be performed once, using an
external wavefront sensor that is no longer required dur-
ing the fiber-array system operation.
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