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A scintillation resistant sensor that allows retrieval of an input optical wave phase using a multi-aperture phase
reconstruction (MAPR) technique is introduced and analyzed. The MAPR sensor is based on a low-resolution
lenslet array in the classical Shack–Hartmann arrangement and two high-resolution photo-arrays for simultaneous
measurements of pupil- and focal-plane intensity distributions, which are used for retrieval of the wavefront phase
in a two stage process: (a) phase reconstruction inside the sensor pupil subregions corresponding to lenslet sub-
apertures and (b) recovery of subaperture averaged phase components (piston phases). Numerical simulations
demonstrate the efficiency of the MAPR technique in conditions of strong intensity scintillations and the presence
of wavefront branch points. © 2012 Optical Society of America
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1. INTRODUCTION
Propagation of optical waves through a medium with random
refractive index inhomogeneities such as the Earth’s atmo-
sphere may result in strong spatial and temporal fluctuations
of wavefront phase and intensity distributions commonly
referred to as phase aberrations and intensity scintillations,
respectively [1–3]. For near-vertical atmospheric propagation
paths—typical for astronomical and space surveillance ima-
ging applications—the turbulence-induced intensity scintilla-
tions are relatively weak (weak-scintillation regime [2]) and
their impact on system performance is relatively small and
quite often can be neglected. Weak-scintillation conditions
significantly simplify sensing and mitigation of the turbu-
lence-induced wavefront phase aberrations using adaptive op-
tics (AO) techniques [4]. It comes with no surprise that
operational principles of wavefront sensors (WFSs) used in
conventional AO systems such as Shack–Hartmann (SH)
WFSs [4,5], curvature sensors [6,7], or lateral shearing inter-
ferometers [8,9] are based on the assumption of weak scintil-
lations. As experiments and analysis show, these conventional
WFSs do not perform well in the conditions of optical wave
propagation over near-horizontal or slant atmospheric paths,
which are commonly characterized by moderate to strong in-
tensity scintillations. This drawback significantly limits utiliza-
tion of these wavefront sensing and AO techniques for a
number of rapidly growing atmospheric optics applications.

In this paper we introduce and analyze the performance of
an optical sensing technique referred to as multi-aperture
phase reconstruction (MAPR), which is specifically developed
for simultaneous high-resolution sensing of optical field wave-
front phase φ�r� and intensity I�r� distributions under condi-
tions of strong intensity scintillations. Here r � fx; yg
designates a coordinate vector in the MAPR sensor pupil

plane. Note that since complex amplitude of an optical field
A�r� can be represented in the form A�r� � jA�r�j exp� jφ�r��,
where jA�r�j � I1 ∕ 2�r�, and both phase φ�r� and amplitude
jA�r�j functions can be obtained from the MAPR sensor mea-
surements, the sensor described can also be considered as a
complex field sensor.

In Section 2 we provide a qualitative comparison between
the MAPR sensor and the commonly used SH and lens analy-
zer [Gerchberg–Saxton (GS) technique] sensors and outline
both similarities and differences between these wavefront
sensing techniques. This section also presents computational
steps that are required for phase reconstruction in the MAPR
sensor.

Section 3 presents results of the MAPR sensor performance
analysis obtained through numerical simulations, and
Section 4 concludes this paper by summarizing the results.

2. MAPR SENSOR OPERATIONAL
PRINCIPLE
A. MAPR versus Shack–Hartmann and Lens Analyzer
(Gerchberg–Saxton) Sensors
The notional schematic of the MAPR sensor is shown in Fig. 1
(a). The sensor is composed of an optical reducer, a beam
splitter, a lenslet array, and pupil- and focal-plane photo-
arrays PAP and PAF . The optical reducer and beam splitter
are used for reimaging of the sensor pupil onto both the
photo-arrays PAP and lenslet array. The photo-array PAP pro-
vides measurements of the input wave intensity distribution
IP�r� � I�Mr� that is scaled by a factor M by the beam redu-
cer. To simplify notations, we assume M � 1 and IP�r� � I�r�
and only consider a rectangular lenslet array and photo-arrays
respectively composed of Nl � nl × nl lenslets and Np �
np × np pixels, where nl and np are integers characterizing

M. Aubailly and M. Vorontsov Vol. 29, No. 8 / August 2012 / J. Opt. Soc. Am. A 1707

1084-7529/12/081707-10$15.00/0 © 2012 Optical Society of America



lenslet array and photo-array spatial resolutions. The optical
assembly composed of the lenslet array and focal-plane photo-
array PAF in Fig. 1(a) is similar to a conventional SH WFS, as
shown in Fig. 1(b) [4]. An important difference between these
two sensors is that the spatial resolution of the reconstructed
phase for the SH sensor is limited by the resolution of the lens-
let array, while the resolution for the corresponding MAPR
sensor is determined only by the resolution of photo-arrays.
Depending on applications, the number of pixels Np in
photo-arrays used in SH sensors usually ranges from Np �
128 × 128 to Np � 512 × 512 or sometimes higher, while the
number of lenslets Nl seldom exceeds Nl � 32 × 32. In con-
trast with SH sensors, high-resolution wavefront sensing is
achieved in the MAPR sensor using a relatively low-resolution
lenslet array. As shown below, the number of lensletsNl in the
MAPR sensor depends on the level of intensity scintillations of
the input wave and typically does not exceed Nl � 4 × 4
lenslets even in conditions of strong intensity scintillations.

Another major difference between SH and MAPR sensors is
related to the phase reconstruction technique. In SH WFSs
phase reconstruction is based on estimating wavefront slopes
averaged over lenslet subaperture areas fΩlg. These wavefront
slopes, denoted by vectors pl�l � 1;…; Nl�, are used for com-
putation of the phase function ~φ�r�within the entire SH sensor
aperture. Slope vectors fplg are obtained by computing displa-
cements of the lenslet focal spots using subsets fIFl �r�g of the
focal-plane intensity distribution IF �r�. Here the function IFl �r�
is defined within the lth lenslet subaperture Ωl and r ∈ Ωl. The
subsets fIFl �r�g of the focal-plane intensity distribution are
also used in the MAPR sensor, not for computation of the
wavefront slopes, but rather for retrieval of phase functions
f ~φl�r�g �l � 1;…; Nl� inside the subaperture regions fΩlg.

These functions are referred to here as local phases.
With the exception of unknown constants fΔlg (piston
phases), these local phases f ~φl�r�g represent estimates of
the true phase φ�r� within their corresponding lenslet suba-
perture regions fΩlg, that is, φl�r� � ~φl�r� �Δl, where φl�r�
is the true phase inside Ωl. The piston phases fΔlg are deter-
mined during the second stage of the MAPR phase reconstruc-
tion algorithm as described in Subsection 2.C.

Computation of local phases f ~φl�r�g in the MAPR sensor
can be achieved using a well known iterative algorithm such
as the GS algorithm [10], the phase diversity algorithm [11], or
the conditional gradient descent optimization algorithm [12].
Note that these iterative algorithms were originally developed
for phase reconstruction in a WFS commonly referred to as a
lens analyzer [12] or phase diversity sensor [13]. A notional
schematic of this sensor is shown in Fig. 1(c), which includes
a single lens and pupil- and focal-plane photo-arrays. In this
sensor, retrieval of the phase function φ�r� over the entire
sensor aperture is based on iterative processing of the simul-
taneously captured pupil- and focal-plane intensity distribu-
tions, IP�r� and IF �r�. In contrast, in the MAPR sensor in
Fig. 1(a), retrieval of local phases inside the lenslet subaper-
ture regions fΩlg is performed using corresponding subsets
fIPl �r�g and fIFl �r�g of the measured intensity distributions
IP�r� and IF �r� as described in Subsection 2.B.

In general terms, the MAPR wavefront sensing technique
integrates both zonal (aperture division) and modal (phase re-
trieval over entire aperture) approaches that are utilized cor-
respondingly in the SH and lens analyzer WFS. Similarly to the
SH sensor, the input wavefront is subdivided into an array of
equally sized zones defined by the lenslet subapertures. At the
same time in each zone high-resolution phase retrieval is
based on processing of the corresponding pupil- and focal-
plane intensity distributions that are dependent on wavefront
phase within the entire subaperture—a characteristic of the
modal wavefront sensing approach [4]. The final step of phase
reconstruction over the entire aperture includes retrieval of
piston phases.

Merging both wavefront sensing approaches (zonal and
modal) has several advantages. First, note that spatial fluctua-
tions of the input wave intensity and phase inside lenslet sub-
aperture areas are less severe than over the entire sensor
aperture. For this reason reconstruction of local phase func-
tions in the MAPR sensor most likely results in faster conver-
gence compared to the corresponding reconstruction over the
entire aperture as implemented in the lens analyzer sensor. As
shown in Section 3, this results in a more robust phase recon-
struction in conditions of strong intensity scintillations com-
pared to both SH and lens analyzer sensors. Another potential
advantage of the MAPR sensor is related to computational ef-
ficiency. Reconstruction of local phases in the MAPR sensor
can be implemented in parallel, i.e., through simultaneous pro-
cessing of pupil- and focal-plane intensity subsets as illu-
strated in Fig. 2. This parallel processing can significantly
reduce computational time. An additional increase of the
phase reconstruction speed can be achieved with a parallel
readout of intensity data from the photo-array regions corre-
sponding to lenslet subapertures.

As previously mentioned, the aperture size of individual
lenses in the lenslet array of the MAPR sensor is significantly
larger than in the SH sensor. This increase of lenslet aperture
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Fig. 1. (Color online) Notional schematics of (a) MAPR, (b) Shack–
Hartmann, and (c) lens analyzer wavefront sensors.
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size without sacrificing spatial resolution in optical phase re-
construction is highly desirable for sensing of phase aberra-
tions that are composed of both large- and small-scale
components. The presence of a large-scale phase aberration
component may result in significant displacements of the lens-
let focal spots. In the case of a conventional SH sensor with
relatively small lenslets, this may result in focal spot displace-
ment outside the photo-array regions corresponding to lenslet
subapertures causing optical coupling (crosstalk) between
neighboring photo-array regions, inaccurate estimation of
centroid displacements, and subsequent errors in phase mea-
surements. The use of larger lenslets in the MAPR sensor
allows a significant reduction of such crosstalk.

B. Retrieval of Local Phases
As already mentioned, reconstruction of phase φ�r� from
measured intensity distributions IP�r� and IF �r� in the MAPR
sensor is performed in two steps: (1) retrieval of local phases
f ~φl�r�g and (2) recovery of piston (subaperture averaged)
phases fΔlg. Several techniques can potentially be applied
for computation of local phases from the pupil- and focal-plane
subsets, fIPl �r�g and fIFl �r�g [10–15]. For simplicity we consider
here only the GS algorithm, which represents the most known
and widely used phase reconstruction method [10].

Consider briefly the GS iterative procedure for reconstruc-
tion of local phase ~φl�r� at the lth subaperture. The phase func-
tion ~φl�r� is obtained by computing a sequence of the
corresponding phase functions f ~φl�r; n�g that presumably con-
verges to ~φl�r� ≅ φl�r� � const after a number of iterations
N it. Here n � 0; 1;…; N it and ~φl�r; 0� correspond to the itera-
tion index and an arbitrarily chosen initial phase. Conver-
gence of the iterative process is typically evaluated by
calculating a measure (metric) Jl�n� � J � ~φl�r; n�� that de-
pends on the reconstructed local phase ~φl�r; n� at the nth
iteration. Computation of phase ~φl�r; n� 1� at the �n� 1�th
GS iteration includes the following steps:

(a) Computation of the pupil-plane complex function

AP
l �r; n� �

�����������
IPl �r�

q
exp�i ~φl�r; n�� using the lth subset of the

measured pupil-plane intensity IPl �r� and local phase
~φl�r; n� obtained at the nth iteration;

(b) Computation of the complex field in the focal plane of
the lth lenslet AF

l �r; n� � Q�AP
l �r; n��, where Q is the operator

describing propagation of an optical wave from the lenslet pu-
pil plane to the focal plane. For an ideal lenslet, Q represents
the Fourier transform operator;
(c) Computation of an auxiliary complex function at the

lenslet focal plane (focal-plane complex field): ψF
l �r; n� �������������

IFl �r�
q

exp�iφF
l �r; n��, where φF

l �r; n� � arg�AF
l �r; n�� is the

phase of the complex field AF
l �r; n� and IFl �r� is the lth subset

of the measured focal-plane intensity;
(d) Computation of an auxiliary complex function at
the pupil plane (pupil-plane complex field): ψP

l �r; n� � Q−1

�ψF
l �r; n��, where Q−1 is the inverse operator with respect to

Q. This operator describes propagation of the optical wave
with complex amplitude ψF

l �r; n� from the lenslet focal plane
to the pupil plane;
(e) Approximation of the local phase at the �n� 1�th

iteration is then given by ~φl�r; n� 1� � arg�ψP
l �r; n��.

Note that the GS algorithm is equivalent to the conditional
gradient descent optimization technique for minimization of
the mean-square phase error [12].

The iterative procedure (a) through (e) is repeated a num-
ber of iterations N it to ensure convergence of sequence
f ~φl�r; n� 1�g toward a small vicinity of the stationary
state phase. The number of required iterations N it is
commonly defined from the condition ϵ�n � N it� � j�Jl�n�−
Jl�n − 1�� ∕ Jl�n�j ≤ ϵ0 ≪ 1. The phase function ~φl�r�≡
~φl�r; N it� corresponding to the last iteration is considered
as an estimate of φl�r�. Note that due to the existence of local
minima of the phase error metric Jl�n�, the GS iterative pro-
cess can in principle converge to different phase functions.
The probability of the GS process converging to a local mini-
mum increases with the strength of input wave intensity scin-
tillations and phase aberrations. In the strong scintillation
regime phase function φ�r� can contain phase singularities
in the form of branch points (see [16,17]) whose presence sig-
nificantly reduces convergence speed and most likely results
in convergence to a local minimum.

Convergence speed is also highly sensitive to the initial
phase functions f ~φl�r; 0�g that the iterative process starts
from. The closer f ~φl�r; 0�g is to the true local phases fφl�r�g
(up to a constant), the faster the convergence. In the absence
of information regarding the true local phases, a set of random
functions or constant values can be used as the initial phases
f ~φl�r; 0�g. In the case of the MAPR sensor, the following more
efficient method for setting the initial phase functions
f ~φl�r; 0�g can be used. Similar to the conventional SH WFS,
one can compute a phase function ~φSH�r� over the entire sen-
sor aperture by utilizing the information about focal spot cen-
troid displacements. The initial local phases f ~φl�r; 0�g can then
be defined using values of function ~φ�r; 0� � ~φSH�r� inside the
corresponding subaperture areas fΩlg. Since the GS iterations
do not change the subaperture averaged (piston) components
of f ~φl�r; 0�g, these piston phase values can be calculated and
used as the initial piston phases in the iterative process of
piston phase reconstruction described in the following
section. As shown in Subsection 3.C, this SH sensor-based
technique for initial local and piston phase setting allows
one to significantly speed up the iteration process of phase
reconstruction.
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C. Computation of Piston Phases
Consider now the algorithm for retrieval of the piston (suba-
perture averaged) phases fΔlg. The general idea is based on
the assumption that the lens array is composed of densely
packed lenslets, and the local phase functions in the boundary
regions between adjacent subapertures are alike.

This assumption can be formulated as a continuity require-
ment for the true phase function φ�r� at the boundary regions
between adjacent lenslets. To illustrate, consider three geo-
metries of a densely packed lenslet array, shown in Fig. 3.
In the case of lenslets with a circular aperture as shown in
Fig. 3(a), the boundary between two adjacent lenslets is re-
duced to a single point, while in the case of hexagonal and
rectangular lenslet shapes as in Figs. 3(b) and 3(c), the cor-
responding boundary is a line segment. The last two lenslet
array geometries are advantageous, since they allow estima-
tion of piston phases based on phase continuity over line
segments belonging to adjacent subapertures rather than con-
tinuity at a limited number of adjacent points as in Fig. 3(a).
This results in significant improvement of accuracy in piston
phase retrieval. In the numerical simulations described in
Section 3, we consider MAPR sensors with a rectangular
lenslet array geometry.

In the lenslet array in Fig. 3(c), consider the set of points
frblkg defined as the projection of r ∈ Ωl onto the boundary line
segment �Λlk� separating the lth subaperture from the
adjacent kth subaperture, and introduce the corresponding
boundary window function ρlk�r − rblk� � exp�−jr − rblkj2 ∕w2�
for r ∈ Ωl and ρlk�r − rblk� � 0 otherwise, where w is the
boundary width parameter.

Consider the following function (phase continuity metric)
that depends on the piston phases

J�Δ1;…;ΔNl
� �

XNl

l�1

ϵ�0�l �Δ1;…;ΔNl
�; (1)

where

ϵ�0�l �Δ1;…;ΔNl
� �

XMl

k≠l

��Z
Ωl

ρlk�r − rblk�f ~φl�r� �Δjgd2r

−

Z
Ωk

ρkl�r − rbkl�f ~φk�r� �Δkgd2r
�
2
�

(2)

is a measure of the phase continuity between the lth subaper-
ture and its Ml neighboring subapertures in the lenslet array.
The term ϵ�0�l �Δ1;…;ΔNl

� evaluates the squared difference in-
tegrated over the boundary area (as defined by the window

functions fρlk�r − rblk�g) between the local phase and the
corresponding local phase values for all neighboring subaper-
tures. Note that the width of the boundary window function
(parameter w) is chosen based on a priori information about
the characteristic spatial scale of phase inhomogeneities and
noise level.

Computation of piston phases in the MAPR sensor is based
on minimization of the phase continuity metric [Eq. (1)] as a
function of variables fΔlg. Metric minimization can be per-
formed using the iterative stochastic parallel gradient descent
(SPGD) technique [18]. In this technique the desired piston
phases fΔlg are obtained using the following iterative
procedure:

Δ�n�1�
l � Δ�n�

l � γ�n�δJ�n�δΔ�n�
l ; l � 1;…; Nl; (3)

where fΔ�n�
l g are estimates of piston phases at the nth itera-

tion, fδΔ�n�
l g and fδJ�n�g are correspondingly small-amplitude

random perturbations of piston phases and the metric change
resulting from these perturbations, and γ�n� is a gain coeffi-
cient. The iterative process of the piston phase update
[Eq. (3)] is repeated until convergence, and the resulting sta-
tionary state values of piston phases f ~Δlg are used to compute
wavefront phase ~φ�r� over the entire aperture of the MAPR
sensor in the form

~φ�r� �
XNl

l�1

� ~φl�r� � ~Δl�: (4)

Note that the presence of phase dislocations (branch
points) results in 2π phase cuts that may cross boundaries be-
tween subapertures. With a relatively small number of branch
points (with only a few 2π phase cut lines crossing each
boundary region), their impact on the corresponding continu-
ity metric value is relatively small. Nevertheless, an increase
of the number of branch points contributes to an overall de-
crease of the phase reconstruction accuracy that occurs with
the increase of intensity scintillation level.

D. Estimation of Computational Efficiency
Consider the computational cost associated with wavefront
reconstruction in the MAPR sensor and compare it with the
conventional lens analyzer (GS technique). In both sensors,
phase reconstruction is performed using digital data proces-
sing of the measured intensity distributions IP�r� and IF �r�.
Reconstruction algorithms such as the GS algorithm are based
on the calculation of fast Fourier transforms (FFTs). For most
implementations of the FFT algorithm, the computational cost
is proportional to Np log Np, where Np is the number of data
points over the sensor aperture. Correspondingly, the compu-
tational cost for phase reconstruction using a lens analyzer/GS
sensor is proportional to CLA � NLA

it Np log Np, where NLA
it is

the number of GS iterations required for phase reconstruction
in the lens analyzer/GS. The computational cost of a single
local phase reconstruction in the MAPR sensor is proportional
to CMAPR � NMAPR

it Ns log Ns, where Ns � Np ∕Nl is the
number of photo-array pixels inside each subaperture of
the MAPR sensor and NMAPR

it is a characteristic number of
GS iterations.

Assume that reconstruction of local phases in the MAPR
sensor is performed in parallel at each photo-array region cor-
responding to the lenslet subaperture as illustrated in Fig. 2

(a) (b) (c)lk

l k l k

l k

Fig. 3. Examples of densely packed lenslet array configurations for
different lenslet shapes: (a) circular, (b) hexagonal, and (c) rectangu-
lar. The dot in (a) and dashed rectangles in (b) and (c) indicate the
region �Λlk� used for piston phase reconstruction.
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(see computational blocks GSl). In this case we can define a
performance factor η that characterizes the ratio of computa-
tional cost of phase reconstruction in the lens analyzer/GS
versus MAPR sensor:

η � CLA

CMAPR
� NLA

it Np log Np

NMAPR
it Ns log Ns

� NLA
it Nl log Np

NMAPR
it �log Np − log Nl�

≅
NLA

it

NMAPR
it

Nl: (5)

We assumed here that Np ≫ Nl and also neglected the com-
putational cost related with piston phase retrieval, which does
not require Fourier transform computations. For the rectan-
gular lens array with Nl � nl × nl, where nl is the number
of lenslets in the array’s column or row, from Eq. (5) we obtain

η ≅
NLA

it

NMAPR
it

n2
l � κn2

l ; (6)

where κ � NLA
it ∕NMAPR

it is the ratio of the number of GS itera-
tions required for phase reconstruction in the lens analyzer/
GS and in a single subaperture of the MAPR sensor. Note that
the number of GS iterations NMAPR

it required for phase recon-
struction inside the MAPR sensor subaperture is significantly
less than the corresponding number of iterations NLA

it for
phase reconstruction inside the entire aperture. Figure 4
shows the performance factor η estimated using desktop per-
sonal-computer-based calculations of phase reconstruction
for various MAPR lenslet array configurations with nl ranging
from 1 to 7. In the computer simulations we used photo-arrays
with Np � 512 × 512 pixels. As can be seen from Fig. 4, the
dependence η�nl� can be quite accurately approximated by
the expression in Eq. (6) with κ ≈ 17 (the value for κ was ob-
tained through the best polynomial fit). For example the
MAPR phase reconstruction is about 250 times faster in a
4 × 4 lenslet array configuration than the corresponding phase
reconstruction in the lens analyzer/GS sensor.

3. PERFORMANCE ANALYSIS
In this section we present results of the MAPR sensor perfor-
mance analysis and discuss techniques that can facilitate
wavefront reconstruction efficiency.

A. MAPR Sensor Numerical Model
In the analysis of the MAPR sensor performance we used an
ensemble of computer-generated random fields as the sen-
sor’s input optical waves. Each realization of the input field
complex amplitude Ain�r� in the sensor’s pupil plane was
obtained using the conventional split-operator-based wave-
optics simulation of optical beam propagation in a volume
atmospheric turbulence [19]. At the beginning of the
propagation path at z � 0 we used a monochromatic, colli-
mated super-Gaussian beam with complex amplitude
A�r; z � 0� � A0 expf−�jrj2 ∕ �2a20��8g, where A0 is the ampli-
tude, a0 � D ∕ 2 is the beam width, and D is the MAPR sensor
aperture diameter. The optical field complex amplitude at the
propagation path end at z � L was utilized as the MAPR sen-
sor input field: Ain�r� � A�r; z � L�. Optical inhomogeneities
along the propagation path were modeled with a set of 10 ran-
dom thin phase screens corresponding to the Kolmogorov tur-
bulence power spectrum [20]. The phase screens were equally
spaced along the propagation path, and their impact (turbu-
lence strength) was characterized by the ratio D ∕ r0, where
r0 is a characteristic Fried parameter for plane waves [21].
By varying D ∕ r0 and propagation distance L, one can control
the strength of input field phase aberrations and intensity scin-
tillations. In the numerical simulations, D ∕ r0 ranged from zero

1 2 3 4 5 6 7nl

0

200

400

600

800

1000

Fig. 4. Performance factor η characterizing the ratio of computa-
tional costs for phase reconstruction using the MAPR sensor with
the array of nl × nl lenslets and the lens analyzer (GS technique): re-
sults of computer simulations (solid curve) and approximation using
Eq. (6) with κ � 17 (dashed curve). The sensor input fields were
generated using the technique described in Subsection 3.A.

I
2 = 1.25 I

2 = 1.75

(a)

(c)

(e)

(b)
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Fig. 5. Gray-scale images corresponding to computer-generated op-
tical field intensity [(a), (b)] and phase [(c), (d)] distributions at the
MAPR sensor pupil plane for D ∕ r0 � 8 [(a), (c)] and D ∕ r0 � 12 [(b),
(d)]. Phase distributions [(c), (d)] are shown inside a 2π range [be-
tween −π (black) and �π (white)]. (e), (f) The corresponding phase
interference patterns. The interference pattern “forks” inside the
white circles indicate branch points.
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(free-space propagation) to 12 and the propagation distance
from L � 0 (no intensity scintillations) to L � 0.1Ldif , where
Ldif � k�D ∕ 2�2 is the diffractive distance and k � 2π ∕ λ is the
wave number. Figures 5(a)–5(d) show examples of the input
field intensity and phase distributions that are obtained using
the technique described above. Note that the phase distribu-
tions in Figs. 5(c) and 5(d) contain phase discontinuities
(branch points) that can be seen as “forks” in the correspond-
ing interference fringes in Figs. 5(e) and 5(f). The interference
patterns IINT�r� in this and other figures are used for qualita-
tive evaluation of the phase reconstruction performance. The
interference patterns were computed using the following ex-
pression: IINT�r� � 1� cosfarg�Ain�r�� � κ0xg, where κ0 is a
constant defining spatial frequency of the interference fringes.

The strength of the input field intensity scintillations was
characterized by the aperture averaged scintillation index

σ2I �
1
S

Z �h�IP�r��2i
hIP�r�i2 − 1

�
d2r; (7)

where IP�r� � jAin�r�j2 and S is the MAPR sensor aperture
area. Here h·i denotes averaging over an ensemble of input
fields corresponding to statistically independent realizations
of phase screens. In the numerical simulations, 50 sets of
phase screens were used for ensemble averaging. Depen-
dence of σ2I on parameter D ∕ r0 in Fig. 6 shows the range
of intensity scintillation used in predictive simulations
of the MAPR sensor performance. Change of parameter
D ∕ r0 from zero to D ∕ r0 � 12 allows generation of sensor
input fields with a wide range of scintillation index
values �0 ≤ σ2I ≤ 1.75�.

In the numerical simulations we assumed rectangular
lenslet arrays with the number of lenslets in rows and columns
ranging from nl � 2 to nl � 7. Each lenslet was represented
by a phase mask with a parabolic phase profile
φl�r� � kjr − rlj2 ∕ �2F�, where r ∈ Ωl, rl is the coordinate vec-
tor corresponding to the lth lenslet center, and F is the focal
distance. Note that in practice individual lenslets are sepa-
rated by narrow gaps. These gaps were modeled by absorbing
masks located along the lenslet edges. The mask width was
set to 5% of the lenslet size. The intensity distribution in
the lenslet focal plane was calculated by considering input
wave propagation through the corresponding combined phase
and intensity mask with further diffraction over distance
F . Figure 7 shows examples of the simulated focal-plane
intensity distributions for a 3 × 3 lens array.

B. Phase Retrieval Accuracy Evaluation
In the numerical simulations of the MAPR sensor we used the
GS algorithm for reconstruction of local phases (see Subsec-
tion 2.B) and the SPGD-based continuity metric minimization
technique described in Subsection 2.C for computation of pis-
ton phases. Examples of such simulations are illustrated in
Fig. 8. The first stage of MAPR computations resulted in re-
construction of local phases, as shown in Figs. 8(a) and 8(b).
The visible sharp boundaries between lenslet regions in the
gray-scale images in Figs. 8(a) and 8(b) indicate the existence
of errors in piston phases. With retrieval of piston phases at
the second step of the MAPR computations, these boundaries
nearly vanish [see the corresponding images in Figs. 8(c)
and 8(d)].

The accuracy of phase reconstruction can be evaluated
with the use of the interference fringe patterns generated
for an optical field with uniform intensity and residual phase
δ�r� � φ�r� − ~φ�r�. Consider first the interference patterns in
Figs. 8(e) and 8(f), which correspond to reconstructed local
phases in Figs. 8(a) and 8(b). Undistorted vertical interference
fringes within lenslet regions and discontinuity of these
fringes along region boundaries indicate both high quality
of local phase reconstruction and the presence of significant
errors in piston phases. Retrieval of piston phases resulted in
continuity of fringes within the entire sensor aperture, as seen
in Figs. 8(g) and 8(h). Note that the piston phases can be re-
constructed in parallel with local phases by nesting the SPGD
iterative calculations into the GS iterative procedure. This
technique of nested GS and SPGD iterative cycles was used
in all calculations described. Accuracy of phase reconstruc-
tion can also be evaluated using the Strehl ratio that is defined
here as [22]

St�n� �
����
Z

jAin�r�j exp�iδ�r; n��d2r
����
2
∕ =
�Z

jAin�r�jd2r
�
2
; (8)

where δ�r; n� � φ�r� − ~φ�r; n� is the residual phase obtained
after the nth phase reconstruction iteration and ~φ�r; n� is
an approximation of the true phase function φ�r� by a set

of local f ~φl�r; n�g and piston fΔ�n�
l g phases obtained after

the nth iteration. An ideal phase reconstruction corresponds
to ~φ�r� � φ�r� � const and yields St � 1. The Strehl ratio va-
lue in Eq. (8) can also be associated with performance of an
adaptive system referred to here as MAPR AO that uses
conjugation of the sensor’s output phase ~φn�r� after each
phase reconstruction iteration as an AO wavefront control
strategy.
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Fig. 6. Aperture averaged scintillation index for the MAPR sensor
input fields used in the numerical simulations versus D ∕ r0 for
L � 0.1Ldif .

Fig. 7. Intensity distributions in the MAPR sensor lenslet focal plane
for input fields shown in Fig. 5: (a) D ∕ r0 � 8 and (b) D ∕ r0 � 12.
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C. Numerical Analysis of Phase Reconstruction
Performance
Compare the efficiency of phase reconstruction with MAPR
and lens analyzer/GS sensors using an identical set of
computer-generated input field realizations described in
Subsection 3.A. This efficiency can be evaluated by consider-
ing dependences of the averaged Strehl ratios hSt�n�i on the
number of the phase reconstruction iterations n. As seen from
the corresponding averaged Strehl ratio curves hSt�n�i in
Fig. 9, reconstruction of phase in the MAPR sensor occurs sig-
nificantly faster than in the lens analyzer/GS.

The speed of phase reconstruction in the MAPR sensor
can be further increased by using the initial conditions

f ~φl�r; n � 0�g and fΔ�n�0�
l g discussed in Subsection 2.B. These

initial conditions are obtained by considering the combination
of the lenslet array and photo-array of the MAPR sensor as a
low-resolution SH sensor and correspondingly computing a
phase function ~φSH�r� with a standard SH phase reconstruc-
tion technique. This phase can be utilized to determine
f ~φl�r; n � 0�g and fΔ�n�0�

l g. To illustrate the efficiency of this
approach, compare the averaged Strehl ratio evolution curves
hSt�n�i shown in Fig. 10, obtained using the SH approximation
of phase ~φSH�r� and spatially uniform and random phase func-
tions as the initial conditions. The results indicate that com-
putation of the initial phase using SH approximation ~φSH�r� of
the true phase allows significant improvement in phase recon-
struction process convergence speed. For this reason the
SH-type initial conditions were utilized in all numerical simu-
lations described below. Note that the impact of the initial
conditions is significantly less noticeable for the lens
analyzer/GS sensor, as indicated in Fig. 10.

Fig. 8. (a)–(d) Phase distributions and (e)–(h) the corresponding in-
terference patterns obtained after n � 200 phase reconstruction itera-
tions using the pupil- and focal-plane intensity distributions from
Figs. 5(a) and 5(b) and 7(a) and 7(b). The phase distributions are
shown before [(a), (b)] and after [(c), (d)] piston phase recovery.
The corresponding interferograms of the residual phase φ�r� − ~φ�r�
are shown before [(e), (f)] and after [(g), (h)] piston phase
computation.
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Fig. 9. Phase reconstruction convergence process in the MAPR wa-
vefront sensor with a 3 × 3 lenslet array (solid curves) and in the lens
analyzer/GS sensor (dashed curves) for (a) D ∕ r0 � 8 and
(b) D ∕ r0 � 12.
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Fig. 10. Averaged Strehl ratio evolution curves for the MAPR (3 × 3
lenslet array configuration) and lens analyzer/GS sensors with differ-
ent initial conditions: Shack–Hartmann-based (solid curves), random
(dashed curves), and spatially uniform (dotted curves) initial phase
functions. The sensor input field realizations correspond to D ∕ r0 � 8.
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Consider now performance of the MAPR and lens analyzer/
GS sensors in operation with input optical waves that encoun-
ter a different level of atmospheric-turbulence-induced phase
aberrations and intensity scintillations, which is characterized
by the D ∕ r0 ratio. In the numerical simulations for each D ∕ r0
value a set of 50 statistically independent input fields were
generated using the technique described in Subsection 3.A.
For each input field realization we performed 200 iteration
of phase reconstruction calculations and computed Strehl ra-
tios corresponding to the residual phases. The dependence of
the averaged Strehl ratio hSt�n � 200�i on D ∕ r0 is shown in
Fig. 11 for both MAPR and lens analyzer/GS sensors. As seen
from the presented results, the MAPR sensor can provide
high-quality phase reconstruction that is characterized by
the averaged Strehl ratio exceeding 0.9 for input fields with
D ∕ r0 ≤ 8 and the scintillation index σ2I ranging from zero to
σ2I � 1.25. Residual phase Strehl ratio values that exceed
0.8 can be achieved with input fields with 0 ≤ D ∕ r0 ≤ 12 and
scintillation index 0 ≤ σ2I ≤ 1.75. These results clearly demon-
strate the robustness of the MAPR sensor with respect to input
field intensity scintillations and the presence of phase branch
points, which is significantly higher if compared with both the
SH and lens analyzer/GS sensors. The SH sensor appeared to
be the most sensitive to the input field intensity scintillations.
The corresponding computer simulations of the SH sensor
with a 16 × 16 lenslet array resulted in significant errors
in phase reconstruction when the scintillation index
exceeded 0.3.

Note that there are several factors limiting the Strehl ratio
in the presented results. First, in order to perform a fair com-
parison between the MAPR and the lens analyzer/GS techni-
ques, we performed a fixed number of phase reconstruction
iterations (200 iterations) for both approaches. The Strehl ra-
tio for both techniques can be improved by increasing the
number of iterations. However, Fig. 9 shows how the MAPR
reconstruction converges significantly faster than the GS ap-
proach. Another factor limiting the Strehl ratio under strong
scintillation is that reconstruction is more likely to get trapped
in local extrema and stagnate as the complexity of the phase
increases. It should be emphasized, however, that reconstruc-
tion over subapertures (less data points) reduces the likeli-
hood of stagnation compared to reconstruction over the
entire aperture as in the GS technique. Finally, cross talk be-
tween subapertures in the MAPR sensor reduces the accuracy
of the reconstruction, as discussed later in this section.

Robustness of the MAPR sensor operation with respect to
intensity scintillations and phase reconstruction speed
depends on the lenslet array resolution. In the case of rectan-
gular arrays with nl × nl lenslets, the lenslet array resolution is
defined by the number nl of lenslets in the array’s rows and
columns. In the numerical simulations we examined operation
of MAPR sensors with different resolutions of lenslet arrays
(nl ranging from 2 to 7) using identical sets of input op-
tical fields corresponding to weak �D ∕ r0 � 4�, medium
�D ∕ r0 � 8�, and strong �D ∕ r0 � 12� turbulence conditions.
The calculated dependence of the averaged Strehl ratio hSti
of the residual phase after 200 iterations of phase reconstruc-
tion on lenslet array resolution nl is shown in Fig. 12 for input
fields with different D ∕ r0 parameters.

The presented results show that performance of the MAPR
sensor in terms of the Strehl ratio achieves an optimal value
for lenslet array configurations with nl ranging between nl �
3 and nl � 5. In general, the optimum lenslet array configura-
tion depends on the right balance between two contradictory
factors: while an increase of lenslet array resolution (decrease
of lenslet aperture size) is desired, as it leads to faster phase
reconstruction convergence, it also eventually results in an
undesired increase of cross talk between focal-plane intensity
distributions and errors in phase reconstruction (see corre-
sponding discussions in Subsections 2.A and 2.D). The
optimal balance of these factors and, hence, optimal lenslet
array configuration depend on the strength of the turbulence
that impacted the sensor’s input field. In conditions of
weak turbulence, the optimal performance is achieved with
a higher resolution lenslet array, since in weak turbulence
conditions phase aberrations are relatively small and one
can decrease the lenslet aperture size while avoiding potential
cross talk between focal spots that belongs to neighboring
lenslet array subapertures. As shown in Fig. 12, in strong tur-
bulence conditions the optimal MAPR sensor performance is
achieved with a lower resolution lenslet array: nl � 4 for
D ∕ r0 � 12 versus nl � 5 for D ∕ r0 � 8. The increase of lenslet
subaperture is related to turbulence-induced focal spot widen-
ing, leading to an increase of the cross talk. Note that the re-
sults presented in Fig. 12 are obtained using a fixed number of
phase reconstruction iterations for MAPR sensors with
different resolutions of lenslet arrays and thus do not account
for a computational performance increase that can be
achieved using parallel computations as discussed in
Subsection 2.D.
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Fig. 11. Performance curves (Strehl ratios versus D ∕ r0) for the
MAPR 3 × 3 lenslet array (solid curve) and lens analyzer/GS (dashed
curve) sensors. The length of the vertical lines indicates the standard
deviation obtained for the corresponding Strehl ratio value.
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Fig. 12. Averaged Strehl ratio for the residual phase achieved after
200 MAPR phase reconstruction iterations versus number of lenslets
nl in rows and columns of a rectangular lenslet array for D ∕ r0 � 4, 8,
and 12.
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D. Impact of Photo-Sensor Noise
Consider now wavefront sensing conditions that are charac-
terized by a relatively low level of input field photon flux.
These operational conditions require consideration of a noise
signal that is superimposed with intensity distributions of both
MAPR sensor photo-arrays. In the numerical simulations this
noise was represented by delta-correlated random fields with
Gaussian probability distribution, zero mean, and standard de-
viation σ. The standard deviation value σ can be associated
with the strength of the photon noise at photo-array pixels.
For each realization of the input field, the noise signal strength
can be characterized by factors ξP � IPmax ∕ σ and ξF � IFmax ∕ σ,
where IPmax and IFmax are maximum values of the MAPR sensor
pupil- and focal-plane intensity distributions IP�r� and IF �r�.
The factors ξP and ξF also characterize the dynamical range of
the WFS, defined as the ratio of maximum number of photons
received by a sensor’s photo-array pixel to the number of
noise photons per pixel.

In the numerical simulations we assumed that the average
noise factors are identical for both pupil- and focal-plane
photo-arrays hξF i � hξPi � hξi, which can be achieved by ad-
justing the input field optical power entering the photo-arrays.
In the simulations we used an identical set of 50 field realiza-
tions corresponding to atmospheric turbulence conditions
with D ∕ r0 � 8 as the input fields for both the MAPR and lens
analyzer/GS sensors. Prior to phase reconstruction calcula-
tions we superimposed a delta-correlated noise pattern with
a fixed σ into both pupil- and focal-plane intensity distribu-
tions. The obtained “noisy” intensity patterns were used for
phase reconstruction. The residual phase achieved after
200 iterations of phase reconstruction calculations was used
for computation of the Strehl ratio St and factors ξP and ξF .
The Strehl ratio values obtained for different input field and
noise realizations were averaged. The computations were re-
peated using the same set of input fields with a superimposed
noise pattern having different standard deviation σ. The ob-
tained dependence of the averaged Strehl ratio hSti on the
averaged noise factor standard deviation σξ �

���������
hξ2i

p
is pre-

sented in Fig. 13. The results show that photo-array noise
can significantly impact phase reconstruction performance
of both MAPR and lens analyzer/GS sensors. Nevertheless
the MAPR sensor is significantly less sensitive to photo-array
noise. In Fig. 13 the averaged Strehl ratio achieved with the
MAPR sensor remains at least twice larger than the lens ana-
lyzer/GS for the entire range of noise factors examined. For
the MAPR sensor with a 3 × 3 lenslet array, the impact of

photo-array noise on phase reconstruction accuracy can be
practically neglected when the maximum value of received
photon flux exceeds the corresponding noise level by a factor
of ξ � 1; 000. Note that the results in Fig. 13 also reveal a
strong dependence of the MAPR sensor performance with re-
spect to the lenslet array resolution (compare performance of
the MAPR sensors having photo-arrays with 2 × 2 and 3 × 3
lenslets).

4. CONCLUSION
We introduced and analyzed the performance of a new WFS
referred to as multi-aperture phase reconstruction (MAPR)
sensor. This sensor is specifically developed for simultaneous
high-resolution sensing of optical field wavefront phase under
conditions of strong intensity scintillations. This sensor
merges the SH and the lens analyzer/GS wavefront sensing
paradigms by integrating both zonal (aperture division) and
modal (phase retrieval over entire aperture) approaches.
The input wavefront is subdivided into equally sized zones de-
fined by low-resolution lenslet subapertures. In each zone
high-resolution phase retrieval is based on an iterative proces-
sing of the corresponding subsets of the pupil- and focal-plane
intensity distributions that are similar to the lens analyzer
wavefront sensing technique. The final step of phase recon-
struction over the entire aperture includes retrieval of piston
phases based on minimization of the introduced continuity
metric. It is shown that due to the parallel nature of the optical
and signal processing, the MAPR sensor can provide signifi-
cantly faster phase reconstruction and can operate robustly
even in conditions of strong intensity scintillations.
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