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ABSTRACT   

A scintillation-resistant sensor that allows retrieval of an input optical wave phase using a multi-aperture phase 
reconstruction (MAPR) technique is introduced and analyzed.  The MAPR sensor is based on a low-resolution lenslet 
array in the classical Shack-Hartmann arrangement and two high-resolution photo-arrays for simultaneous measurements 
of pupil- and focal-plane intensity distributions which are used for retrieval of wavefront phase in a two stage process:  
(a) phase reconstruction inside the sensor pupil sub-regions corresponding to lenslet sub-apertures, and (b) recovery of 
sub-aperture averaged phase components (piston phases). Numerical simulations demonstrate the efficiency of the 
MAPR technique in conditions of strong intensity scintillations and presence of wavefront branch points. 
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1. INTRODUCTION  
Propagation of optical waves through a medium with random refractive index inhomogeneities such as the Earth 
atmosphere may result in strong spatial and temporal fluctuations of wavefront phase and intensity distributions 
commonly referred to as phase aberrations and intensity scintillations, respectively1-3. For near-vertical atmospheric 
propagation paths – typical for astronomical and space surveillance imaging applications – the turbulence-induced 
intensity scintillations are relatively weak (weak-scintillation regime2) and their impact on system performance is 
relatively small and quite often can be neglected. Weak-scintillation conditions significantly simplify sensing and 
mitigation of the turbulence-induced wavefront phase aberrations using adaptive optics (AO) techniques4.  It comes with 
no surprise that operational principles of wavefront sensors used in conventional AO systems such as Shack-Hartmann 
wavefront sensors (WFS)4,5, curvature sensors6,7 or lateral shearing interferometers8,9 are based on the assumption of 
weak scintillations.  As experiments and analysis show, these conventional wavefront sensors do not perform well in the 
conditions of optical wave propagation over near-horizontal or slant atmospheric paths, which are commonly 
characterized by moderate to strong intensity scintillations. This drawback significantly limits utilization of these 
wavefront sensing and AO techniques for a number of rapidly growing atmospheric optics applications. 

In this paper we introduce and analyze the performance of an optical sensing technique referred to as multi-aperture 
phase reconstruction (MAPR) which is specifically developed for simultaneous high-resolution sensing of optical field 
wavefront phase ߮ሺܚሻ and intensity ܫሺܚሻ distributions under conditions of strong intensity scintillations. Here ܚ ൌ ሼݔ,  ሽݕ
designates a coordinate vector in the MAPR sensor pupil plane.  Note that since complex amplitude of an optical field ܣሺܚሻ can be represented in the form ܣሺܚሻ ൌ |ሻܚሺܣ| ሻሽ, whereܚሻ|exp ሼ݆߮ሺܚሺܣ| ൌ  ሻ andܚሻ, and both phase ߮ሺܚଵ/ଶሺܫ
amplitude |ܣሺܚሻ| functions can be obtained from the MAPR sensor measurements, the sensor described can also be 
considered as a complex field sensor.   

In section 2 we provide a qualitative comparison between the MAPR sensor and the commonly used Shack-Hartmann 
and phase diversity sensors, and outline both similarities and differences between these wavefront sensing techniques. 
This section also presents computational steps that are required for phase reconstruction in the MAPR sensor. Section 3 
presents results of the MAPR sensor performance analysis obtained through numerical simulations, and section 4 
concludes this paper by summarizing the results. 
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2. MAPR SENSOR OPERATIONAL PRINCIPLE 
2.1. MAPR vs. Shack-Hartmann and phase diversity sensors 

The notional schematic of the MAPR sensor is shown 
in Fig. 1(a). The sensor is composed of an optical 
reducer, a beam splitter, a lenslet array, and pupil- and 
focal-plane photo-arrays PAP and PAF. The optical 
reducer and beam splitter are used for reimaging of the 
sensor pupil onto both the photo-arrays PAP and lenslet 
array. Photo-array PAP provides measurements of the 
input wave intensity distribution ܫ௉ሺܚሻ ൌ  ሻ that isܚܯሺܫ
scaled by a factor ܯ by the beam reducer.  To simplify 
notations we assume ܯ ൌ 1 and ܫ௉ሺܚሻ ൌ  ሻ, andܚሺܫ
only consider a rectangular lenslet array and photo-
arrays respectively composed of ௟ܰ ൌ ݊௟ ൈ ݊௟ lenslets 
and ௣ܰ ൌ ݊௣ ൈ ݊௣ pixels, where ݊௟ and ݊௣ are integer 
numbers characterizing lenslet and photo-arrays spatial 
resolutions. The optical assembly composed of the 
lenslet array and focal-plane photo-array PAF in Fig. 
1(a) is similar to a conventional Shack-Hartmann (SH) 
wavefront sensor as shown in Fig. 1(b)4. An important 
difference between these two sensors is that the spatial 
resolution of the reconstructed phase ෤߮ ሺܚሻ for the SH 
sensor is limited by the resolution of the lenslet array, 
while the resolution for the corresponding MAPR 
sensor is determined only by the resolution of photo-
arrays. Depending on applications, the number of 
pixels ௣ܰ in a photo-array used in SH sensors usually 
ranges from ௣ܰ ൌ 128 ൈ 128 to ௣ܰ ൌ 512 ൈ 512 or 
sometimes higher, while the number of lenslets ௟ܰ 
seldom exceeds ௟ܰ ൌ 32 ൈ 32. In contrast with SH 
sensors, high-resolution wavefront sensing is achieved 
in the MAPR sensor using a relatively low-resolution lenslet array. As shown below, the number of lenslets ௟ܰ in the 
MAPR sensor depends on the level of intensity scintillations of the input wave and typically does not exceed ௟ܰ ൌ 4 ൈ 4 
lenslets even in conditions of strong intensity scintillations. 

Another major difference between SH and MAPR sensors is related with the phase reconstruction technique.   In SH 
wavefront sensors phase reconstruction is based on estimating wavefront slopes averaged over lenslet sub-aperture areas ሼΩ௟ሽ. These wavefront slopes, denoted by vectors ሼܘ௟ሽ ሺ݈ ൌ 1, … , ௟ܰሻ, are used for computation of  phase functions ෤߮ ௟ሺܚሻ 
within  the entire SH sensor aperture.  Slope vectors ሼܘ௟ሽ are obtained by computing displacements of the lenslet focal 
spots using subsets ሼܫ௟ிሺܚሻሽ

 
of the focal-plane intensity distribution ܫிሺܚሻ.  Here the function ܫ௟ிሺܚሻ is defined within the 

lth lenslet sub-aperture Ω௟ and ܚ א Ω௟. The subsets ሼܫ௟ிሺܚሻሽ
 
of the focal-plane intensity distribution are also used in the 

MAPR sensor, not for computation of the wavefront slopes, but rather for retrieval of phase functions ሼ ෤߮௟ሺܚሻሽ ሺ݈ ൌ1, … , ௟ܰሻ inside the sub-aperture regions ሼΩ௟ሽ. These functions are referred to here as local phases. With the exception of 
unknown constants ሼΔ௟ሽ (piston phases), these local phases ሼ ෤߮௟ሺܚሻሽ represent estimates of the true phase ߮ሺܚሻ within 
their corresponding lenslet sub-aperture regions ሼΩ௟ሽ, that is ߮௟ሺܚሻ ؆ ෤߮௟ሺܚሻ ൅ Δ௟, where ߮௟ሺܚሻ is the true phase inside Ω௟. The piston phases ሼΔ௟ሽ are determined during the second stage of the MAPR phase reconstruction algorithm as 
described in section 2.3. 

Computation of local phases ሼ ෤߮௟ሺܚሻሽ in the MAPR sensor can be achieved using well known iterative algorithms such as 
the Gerchberg-Saxton10, phase diversity11, or conditional gradient descent optimization12. Note that these iterative 
algorithms were originally developed for phase reconstruction in a wavefront sensor commonly referred to as lens 
analyzer12 or phase diversity sensor13. A notional schematic of this sensor is shown in Fig. 1(c) which includes a single 
lens, and pupil- and focal-plane photo-arrays. In this sensor, retrieval of the phase function ߮ሺܚሻ over the entire sensor 

 
Fig. 1: Notional schematics of (a) MAPR, (b) Shack-Hartmann, 
and (c) lens analyzer (phase diversity) wavefront sensors. 
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aperture is based on iterative processing of the simultaneously captured pupil- and focal-plane intensity distributions, ܫ௉ሺܚሻ and ܫிሺܚሻ.  In contrast, in the MAPR sensor in Fig. 1(a) retrieval of local phases inside the lenslet sub-aperture 
regions ሼΩ௟ሽ is performed using corresponding subsets ሼܫ௟௉ሺܚሻሽ and ሼܫ௟ிሺܚሻሽ of the measured intensity distributions ܫ௉ሺܚሻ 
and ܫிሺܚሻ as described in section 2.2.  

In general terms, the MAPR wavefront sensing technique integrates both zonal (aperture division) and modal (phase 
retrieval over entire aperture) approaches that are utilized correspondingly in the Shack-Hartmann and the lens analyzer 
(phase diversity) wavefront sensors. Similarly to the SH sensor, the input wavefront is sub-divided into an array of 
equally-sized zones defined by the lenslet sub-apertures. At the same time in each zone high-resolution phase retrieval is 
based on processing of the corresponding pupil- and focal-plane intensity distributions that are dependent on wavefront 
phase within the entire sub-aperture — a characteristic of the modal wavefront sensing approach4. The final step of 
phase reconstruction over the entire aperture includes retrieval of piston phases.  

Merging both wavefront sensing approaches (zonal and 
modal) has several advantages. First, note that spatial 
fluctuations of  the input wave intensity and phase 
inside lenslet sub-aperture areas are less severe than 
over the entire sensor aperture. For this reason  
reconstruction of local phase functions in the MAPR 
sensor most likely results in faster convergence 
compared to the corresponding reconstruction over the 
entire aperture as implemented in the lens analyzer 
sensor. As shown in section 3, this results in a more 
robust phase reconstruction in conditions of  strong 
intensity scintillations compared to both SH and lens 
analyzer sensors. Another potential advantage of the 
MAPR sensor is related with computational efficiency.  
Reconstruction of local phases in the MAPR sensor can 
be implemented in parallel, i.e.,  through simultaneous 
processing of pupil- and focal-plane intensities subsets 
as illustrated in Fig. 2. This parallel processing can 
significantly reduce computational time. Additional 
increase of the phase reconstruction speed can be 
achieved with parallel readout of intensity data from the 
photo-array regions corresponding to lenslet sub-
apertures. 

As previously mentioned, the aperture size of individual lenses in the lenslet array of MAPR sensor is significantly 
larger than in the SH sensor. This increase of lenslet aperture size without sacrificing spatial resolution in optical phase 
reconstruction is highly desirable for sensing of phase aberrations that are composed of both large- and small-scale 
components.  The presence of  a large-scale phase aberration component may result in significant displacements of the 
lenslet focal spots.  In the case of a conventional SH sensor with relatively small size lenslets, this may result in focal 
spot displacements outside the photo-array regions corresponding to lenslet sub-apertures causing optical coupling 
(crosstalk) between neighboring photo-array regions, inaccurate estimation of centroid displacements and subsequent 
errors in phase measurements. The use of larger size lenslets in  the MAPR sensor allows a significant reduction of such 
crosstalks.   

2.2. Retrieval of local phases  

As already mentioned, reconstruction of phase ߮ሺܚሻ from measured intensity distributions ܫ௉ሺܚሻ and ܫிሺܚሻ in the MAPR 
sensor is performed in two steps: (1) retrieval of local phases ሼ ෤߮௟ሺܚሻሽ and (2) recovery of piston (sub-aperture averaged) 
phases ሼΔ௟ሽ. Several techniques can potentially be applied for computation of local phases from the pupil- and focal-
plane subsets, ሼܫ௟௉ሺܚሻሽ and ሼܫ௟ிሺܚሻሽ10-15. For simplicity we consider here only the Gerchberg-Saxton (GS) algorithm 
which represents the most known and widely used phase reconstruction method10.  

Consider briefly the GS iterative procedure for reconstruction of local phase ෤߮ ௟ሺܚሻ at the lth sub-aperture. The phase 
function ෤߮ ௟ሺܚሻ is obtain by computing a sequence of the corresponding phase functions ሼ ෤߮௟ሺܚ, ݊ሻሽ, that presumably 

 
Fig. 2: Block-diagram of data processing in the MAPR 
wavefront sensor using parallel computation of local phases ሼ ෤߮௟ሺܚሻሽ with the Gerchberg-Saxton algorithm (computational 
blocks {GSl}) and piston phase reconstruction based on 
stochastic parallel gradient descent (SPGD) optimization 
techniques. 
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converges to ෤߮ ௟ሺܚሻ ؆ ߮௟ሺܚሻ ൅  after a number of ݐݏ݊݋ܿ
iterations ௜ܰ௧. Here ݊ ൌ 0,1, … , ௜ܰ௧ and ෤߮ ௟ሺܚ, 0ሻ correspond to 
the iteration index and an arbitrarily chosen initial phase.  
Convergence of the iterative process is typically evaluated by 
calculating a measure (metric) ܬ௟ሺ݊ሻ ൌ ሾܬ ෤߮௟ሺܚ, ݊ሻሿ that depends 
on the reconstructed local phase ෤߮ ௟ሺܚ, ݊ሻ at the nth iteration.  
Computation of phase ෤߮ ௟ሺܚ, ݊ ൅ 1ሻ at the (n+1)th GS iteration 
includes the following steps:  

(a) Computation of the pupil-plane complex function ܣ௟௉ሺܚ, ݊ሻ ൌ ඥܫ௟௉ሺܚሻexp ሾ݅ ෤߮௟ሺܚ, ݊ሻሿ using the lth subset of 
the measured pupil-plane intensity ܫ௟௉ሺܚሻ and local phase ෤߮ ௟ሺܚ, ݊ሻ obtained at the nth iteration; 

(b) Computation of the complex field in the focal plane of the lth lenslet ܣ௟ிሺܚ, ݊ሻ ൌ ܳሾܣ௟௉ሺܚ, ݊ሻሿ, where ܳ is the 
operator describing propagation of an optical wave from the lenslet pupil plane to the focal plane.  For an ideal 
lenslet, ܳ represents the Fourier-transform operator;  

(c) Computation of an auxiliary complex function at the lenslet focal plane (focal-plane complex field): ߰௟ிሺܚ, ݊ሻ ൌඥܫ௟ிሺܚሻexp ሾ݅߮௟ிሺܚ, ݊ሻሿ, where ߮௟ிሺܚ, ݊ሻ ൌ ,ܚ௟ிሺܣሾ݃ݎܽ ݊ሻሿ  is the phase of the complex field ܣ௟ிሺܚ, ݊ሻ and ܫ௟ிሺܚሻ is 
the lth subset of the measured focal-plane intensity;  

(d) Computation of an auxiliary complex function at the pupil plane (pupil-plane complex field): ߰௟௉ሺܚ, ݊ሻ ൌܳି૚ሾ߰௟ிሺܚ, ݊ሻሿ, where ܳି૚ is the inverse operator with respect to ܳ. This operator describes propagation of the 
optical wave with complex amplitude ߰௟ிሺܚ, ݊ሻ  from the lenslet focal plane to the pupil plane;   

(e) Approximation of the local phase at the (n+1)th iteration is then  given by ෤߮ ௟ሺܚ, ݊ ൅ 1ሻ ൌ arg ሾ߰௟௉ሺܚ, ݊ሻሿ. 
Note that the GS algorithm is equivalent to the conditional gradient descent optimization technique for minimization of 
the mean-square phase error12. 

The iterative procedure (a) through (e) is repeated a number of iterations ௜ܰ௧ to ensure convergence of sequence  ሼ ෤߮௟ሺܚ, ݊ ൅ 1ሻሽ toward a small vicinity of the stationary state phase.  The number of required iterations ௜ܰ௧ is commonly 
defined from the condition ߳ሺ݊ ൌ ௜ܰ௧ሻ ൌ |ሾܬ௟ሺ݊ሻ െ ௟ሺ݊ܬ െ 1ሻሿ/ܬ௟ሺ݊ሻ| ൑ ߳଴ ا 1. The phase function ෤߮ ௟ሺܚሻ ؠ ෤߮௟ሺܚ, ௜ܰ௧ሻ 
corresponding to the last iteration is considered as an estimate of ߮௟ሺܚሻ. Note that due to the existence of local minima of 
the phase error metric ܬ௟ሺ݊ሻ the GS iterative process can in principle converge to different phase functions. The 
probability of GS process converging to a local minimum increases with the strength of input wave intensity 
scintillations and phase aberrations. In the strong scintillation regime phase function ߮ሺܚሻ can contain phase singularities 
in the form of branch points16,17 whose presence significantly reduces convergence speed and most likely results in 
convergence to a local minimum.  

2.3. Computation of piston phases  

Consider now the algorithm for retrieval of the piston (sub-aperture-averaged) phases ሼΔ௟ሽ. The general idea is based on 
the assumption that the lens array is composed of densely packed lenslets, and the local phase functions ሼ ෤߮௟ሺܚሻሽ in 
boundary regions between adjacent sub-apertures are alike.  

This assumption can be formulated as a continuity requirement for the true phase function ߮ሺܚሻ and its first and second 
derivatives at the boundary regions between adjacent lenslets. To illustrate, consider three geometries of a densely-
packed lenslet array shown in Fig. 3. In the case of lenslets with a circular aperture as shown in Fig. 3(a), the boundary 
between two adjacent lenslets is reduced to a single point, while in the case of hexagonal and rectangular lenslet shapes 
as in Figs. 3(b) and 3(c) the corresponding boundary is a line segment. The last two lenslet array geometries are 
advantageous since they allow estimation of piston phases based on phase continuity over line segments belonging to 
adjacent sub-apertures rather than continuity at a limited number of adjacent points as in Fig. 3(a). This results in 
significant improvement of accuracy in piston phase retrieval. In the numerical simulations described in section 3 we 
consider MAPR sensors with rectangular lenslet array geometry. 

 
Fig. 3: Examples of densely-packed lenslet array 
configuration for different lenslet shapes: (a) circular, 
(b) hexagonal, and (c) rectangular. The dot in (a) and 
dashed rectangular in (b) and (c) indicate the region 
(Λlk) used for piston phase reconstruction. 
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In the lenslet array in Fig. 3(b) or 3(c) consider a set of points ሼܚ௟௞௕ ሽ belonging to the boundary line segment Λ௟௞ separating the lth sub-aperture from the adjacent kth sub-aperture as shown in Fig. 3(c), and introduce the 
corresponding boundary window function ߩ௟௞ሺܚ െ ௟௞௕ܚ ሻ ൌ exp ሾെหܚ െ ௟௞௕ܚ หଶ/ݓଶሿ for ܚ א Ω௟ and ߩ௟௞ሺܚ െ ௟௞௕ܚ ሻ ൌ 0 
otherwise, where ݓ is the boundary width parameter.    

Consider the following function (phase continuity metric) that depends on the piston phases 

,൫Δଵܬ … , Δே௟൯ ൌ ෍ቄ߳ߙ௟ሺ଴ሻ൫Δଵ, … , Δே௟൯ ൅ ,௟ሺଵሻ൫Δଵ߳ߚ … , Δே௟൯ ൅ ߯߳௟ሺଶሻ൫Δଵ, … , Δே௟൯ቅே೗
௟ୀଵ , (1) 

where ߚ ,ߙ and ߯ are constant values (weighting coefficients) ranging from zero to one and  

߳௟ሺ௠ሻ൫Δଵ, … , Δே௟൯ ൌ ෍ ൞቎ න ܚ௟௞൫ߩ െ ௟௞௕ܚ ൯ܳ௠ሾ ෤߮௟ሺܚሻሿ݀ଶܚΩ೗ െ න ܚ௞௟൫ߩ െ ௟௞௕ܚ ൯ܳ௠ሾ ෤߮௞ሺܚሻሿ݀ଶܚΩೖ ቏ଶൢெ೗
௞ஷ௟  (2) 

are measures of the phase continuity between the lth sub-aperture and its ܯ௟ neighboring sub-apertures in the lenslet 
array. Here ݉ ൌ ሼ0,1,2ሽ, ܳ଴ሾ ෤߮௟ሺܚሻሿ ൌ ෤߮௟ሺܚሻ, ܳଵሾ ෤߮௟ሺܚሻሿ ൌ ׏| ෤߮௟ሺܚሻ|, and ܳଶሾ ෤߮௟ሺܚሻሿ ൌ ଶ׏| ෤߮௟ሺܚሻ|. In Eq. (1) the term ߳௟ሺ଴ሻ൫Δଵ, … , Δே௟൯ evaluates the squared difference integrated over the boundary area [as defined by the window functions ൛ߩ௟௞൫ܚ െ ௟௞௕ܚ ൯ൟ] between the local phase ෤߮ ௟ሺܚሻ and the corresponding local phase values for all neighboring sub-
apertures.   Similarly, the terms ߳௟ሺଵሻ൫Δଵ, … , Δே௟൯ and ߳௟ሺଶሻ൫Δଵ, … , Δே௟൯ are included into the continuity metric [Eq. (1)] 
for evaluation of averaged difference between boundary values of local phase first and second derivatives represented by 
gradient |׏ ෤߮௟ሺܚሻ| and Laplacian |׏ଶ ෤߮௟ሺܚሻ| operators. Note that the width of the boundary window function (parameter ݓ) is chosen based on a priori information about characteristic spatial scale of phase inhomogeneities and noise level. 

Computation of piston phases in the MAPR sensor is based on minimization of the phase continuity metric [Eq. (1)] as a 
function of variables ሼΔ௟ሽ. Metric minimization can be performed using the iterative Stochastic Parallel Gradient Descent 
(SPGD) technique18. In this technique the desired piston phases ሼΔ୪ሽ are obtained using the following iterative procedure: Δ௟ሺ௡ାଵሻ ൌ Δ௟ሺ௡ሻ ൅ ,Δ௟ሺ௡ሻߜሺ௡ሻܬߜሺ௡ሻߛ ݈ ൌ 1, … , ௟ܰ , (3) 

where ሼΔ௟ሺ௡ሻሽ are estimates of piston phases  at the nth iteration, ሼδΔ௟ሺ௡ሻሽ and ܬߜሺ௡ሻ are correspondingly small-amplitude 
random perturbations of piston phases and the metric change resulting from these perturbations, and ߛሺ௡ሻ is a gain 
coefficient. The iterative process of the piston phase update [Eq. (3)] is repeated until convergence and the resulting 
stationary state values of piston phases ሼΔ෩௟ሽ 

are used to compute wavefront phase ෤߮ ሺܚሻ over the entire aperture of the 
MAPR sensor in the form:   

෤߮ ሺܚሻ ൌ ෍ൣ ෤߮௟ሺܚሻ ൅ Δ෩௟൧ே೗
௟ୀଵ . (4) 

3. PERFORMANCE ANALYSIS 
In this section we present results of the MAPR sensor performance analysis and discuss techniques that can facilitate 
wavefront reconstruction efficiency.   

3.1. MAPR sensor numerical model  

In the analysis of the MAPR sensor performance we used an ensemble of computer generated random fields as the 
sensor’s input optical waves. Each realization of the input field complex amplitude ܣ௜௡ሺܚሻ in the sensor’s pupil plane 
was obtained using the conventional split-operator based wave-optics simulation of optical beam propagation in a 
volume atmospheric turbulence19. At the beginning of the propagation path at ݖ ൌ 0 we used a monochromatic, 
collimated super-Gaussian beam with complex amplitude ܣሺܚ, ݖ ൌ 0ሻ ൌ  ଴ isܣ ଶ/ሺ2ܽ଴ଶሻሿ଼ሽ, where|ܚ|଴exp ሼെሾܣ
amplitude, ܽ଴ ൌ  is the MAPR sensor aperture diameter.  The optical field complex amplitude ܦ is beam width, and 2/ܦ
at the propagation path end at ݖ ൌ ሻܚ௜௡ሺܣ :was utilized as the MAPR sensor input field ܮ ൌ ,ܚሺܣ ݖ ൌ  ሻ. Opticalܮ
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inhomogeneities along the propagation path were 
modeled with a set of 10 random thin phase screens 
corresponding to the Kolmogorov turbulence power 
spectrum20. The phase screens were equally spaced 
along the propagation path and their impact (turbulence 
strength) was characterized by the ratio ݎ/ܦ଴ where ݎ଴ is 
a characteristic Fried parameter for plane wave21. By 
varying ݎ/ܦ଴ and propagation distance ܮ one can 
control strength of input field phase aberrations and 
intensity scintillations. In the numerical simulations, ݎ/ܦ଴ was ranging from zero (free-space propagation) to 
12, and the propagation distance from ܮ ൌ 0 (no 
intensity scintillations) to ܮ ൌ ௗ௜௙ܮ ௗ௜௙, whereܮ0.1 ൌ݇ሺ2/ܦሻଶ is the diffractive distance, and ݇ ൌ  is ߣ/ߨ2
wave number. Figs. 4(a)-(d) show examples of the input 
field intensity and phase distributions which are 
obtained using the technique described above. Note that 
the phase distributions in Figs. 4(c) and 4(d) contain 
phase discontinuities (branch points) that can be seen as 
“forks” in the corresponding interference fringes in Figs. 
4(e) and 4(f). The interference patterns ܫூே்ሺܚሻ in this 
and other figures are used for qualitative evaluation of 
the phase reconstruction performance. The interference 
patterns were computed using the following expression: ܫூே்ሺܚሻ ൌ 1 ൅ cosሼargሾܣ௜௡ሺܚሻሿ ൅  ଴ is aߢ ሽ, whereݔ଴ߢ
constant defining spatial frequency of the interference 
fringes.     

The strength of the input field intensity scintillations 
was characterized by the aperture-averaged scintillation 
index  ߪூଶ ൌ 1ܵ න ቊۃሾܫ௉ሺܚሻሿଶܫۃۄ௉ሺܚሻۄଶ െ 1ቋ ݀ଶ(7) ,ܚ 

where ܫ௉ሺܚሻ ൌ  ሻ|ଶ and ܵ is the MAPR sensorܚ௜௡ሺܣ|
aperture area. Here ۃ.  denotes averaging over ensemble ۄ
of input fields corresponding to statistically independent 
realizations of phase screens. In the numerical 
simulations, 50 sets of phase screens were used for ensemble averaging. Dependence of ߪூଶ on parameter ݎ/ܦ଴ in Fig. 5 
shows the range of intensity scintillation used in predictive simulations of the MAPR sensor performance. Change of 
parameter ݎ/ܦ଴ from zero to ݎ/ܦ଴ ൌ 12 allows generation of sensor input fields with a wide range of scintillation index 
values ሺ0 ൑ ூଶߪ ൑ 1.75ሻ.    

In the numerical simulations we assumed rectangular lenslet arrays with the number of lenslets in rows and columns 
ranging from ݊௟ ൌ 2 to ݊௟ ൌ 7.  Each lenslet was represented by a phase mask with parabolic phase profile ߮௟ሺܚሻ ൌ݇|ܚ െ ܚ ሻ, whereܨ௟|ଶ/ሺ2ܚ א Ω௟,  ܚ௟ is the coordinate vector corresponding to lth lenslet center, and ܨ is the focal distance.  
Note that in practice individual lenslets are separated by narrow gaps.  These gaps were modeled by absorbing masks 
located along the lenslet edges. The mask width was set to 5% of the lenslet size.  Intensity distribution in the lenslet 
focal plane was calculated by considering input wave propagation through the corresponding combined phase and 
intensity mask with further diffraction over distance ܨ.   Fig. 6 shows examples of the simulated focal-plane intensity 
distributions for a 3 ൈ 3  lens array.  

 
Fig. 4: Grey-scale images corresponding to computer generated 
optical field intensity (a,b) and phase (c,d) distributions at the 
MAPR sensor pupil plane for ݎ/ܦ଴ ൌ 8 (a,c) and ݎ/ܦ଴ ൌ 12 
(b,d). Phase distributions in (c,d) are shown inside 2ߨ range 
[between െߨ (black) and ൅ߨ (white)]. The corresponding phase 
interference patterns are shown in (e,f).  The interference pattern 
“forks” inside the white circles indicate branch points. 
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3.2. Phase retrieval accuracy evaluation   

In the numerical simulations of the MAPR sensor we 
used Gerchberg-Saxton (GS) algorithm for 
reconstruction of local phases (see section 2.2) and the 
SPGD-based continuity metric minimization technique 
described in section 2.3 for computation of piston 
phases.  Examples of such simulations are illustrated in 
Fig. 7. The first stage of MAPR computations resulted 
in reconstruction of local phases, as shown in Fig. 
7(a,b). The visible sharp boundaries between lenslet 
regions in the gray scale images in Fig. 7(a,b) indicate 
the existence of errors in piston phases.     With retrieval 
of piston phases at the second step of the MAPR 
computations these boundaries are nearly vanished [see 
the corresponding images in  Fig. 7(c,d)].  

The accuracy of phase reconstruction can be evaluated 
with the use of the interference fringe patterns generated 
for an optical field with uniform intensity and residual 
phase ߜሺܚሻ ൌ ߮ሺܚሻ െ ෤߮ሺܚሻ. Consider first the 
interference patterns in Fig. 7(e,f) which correspond to 
reconstructed local phases in Fig. 7(a,b).  Undistorted 
vertical interference fringes within lenslet regions and 
discontinuity of these fringes along region boundaries 
indicate both high-quality of local phase reconstruction 
and presence of significant errors in piston phases. 
Retrieval of piston phases resulted in continuity of 
fringes  within the entire sensor aperture as seen in Fig. 
7(g,h).   Note that the piston phases can be reconstructed in parallel with local phases by nesting the SPGD iterative 
calculations into the Gerchberg-Saxton iterative procedure.  This technique of nested GS and SPGD iterative cycles was 
used in all calculations described.   

Accuracy of phase reconstruction can also be evaluated using the Strehl ratio that is defined here as22 

ሺ݊ሻݐܵ ൌ ฬන|ܣ௜௡ሺܚሻ| expሾ݅ߜሺܚ, ݊ሻሿ ݀ଶܚฬଶ / ൤න|ܣ௜௡ሺܚሻ|݀ଶܚ൨ଶ, (8) 

where ߜሺܚ, ݊ሻ ൌ ߮ሺܚሻ െ ෤߮ሺܚ, ݊ሻ is the residual phase obtained after nth phase reconstruction iteration and ෤߮ ሺܚ, ݊ሻ is an 
approximation of the true phase function ߮ሺܚሻ by a set of local ሼ ෤߮௟ሺܚ, ݊ሻሽ and piston ሼΔ௟ሺ௡ሻሽ phases obtained after nth 
iteration. An ideal phase reconstruction corresponds to ෤߮ ሺܚሻ ൌ ߮ሺܚሻ ൅ ݐܵ and yields to ݐݏ݊݋ܿ ൌ 1. The Strehl ratio 
value in Eq. (8) can also be associated with performance of an adaptive system referred to here as MAPR AO which uses 
conjugation of the sensor’s output phase ෤߮௡ሺܚሻ after each phase reconstruction iteration as adaptive optics wavefront 
control strategy. 

3.3. Numerical analysis of phase reconstruction performance 

Compare efficiency of phase reconstruction with MAPR and lens-analyzer sensors using an identical set of computer 
generated input field realizations described in section 3.1.  This efficiency can be evaluated by considering dependences 
of the averaged Strehl ratios ݐܵۃሺ݊ሻۄ on the number of the phase reconstruction iterations ݊. As seen from the 
corresponding averaged Strehl ratio curves ݐܵۃሺ݊ሻۄ in Fig. 8, reconstruction of phase in the MAPR sensor occurs 
significantly faster than in the lens analyzer.   

  

 
Fig. 5: Aperture-averaged scintillation index for the MAPR 
sensor input fields used in the numerical simulation vs. ݎ/ܦ଴ for ܮ ൌ  .ௗ௜௙ܮ0.1

 
Fig. 6:  Intensity distributions in the MAPR sensor lens-let focal 
plane for input fields shown in Fig. 4: (a) ݎ/ܦ଴ ൌ 8 and (b) ݎ/ܦ଴ ൌ 12. 
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4. CONCLUSION 
We introduced and analyzed the performance of a new 
wavefront sensor referred to as multi-aperture phase 
reconstruction (MAPR) sensor. This sensor is 
specifically developed for simultaneous high-resolution 
sensing of optical field wavefront phase under 
conditions of strong intensity scintillations. This sensor 
merges the Shack-Hartmann and the phase diversity 
wavefront sensing paradigms by integrating both zonal 
(aperture division) and modal (phase retrieval over 
entire aperture) approaches. The input wavefront is sub-
divided into equally-sized zones defined by low-
resolution lenslet sub-apertures. In each zone high-
resolution phase retrieval is based on an iterative 
processing of the corresponding subsets of the pupil- 
and focal-plane intensity distributions that are similar to 
the phase diversity wavefront sensing technique. The 
final step of phase reconstruction over the entire 
aperture includes retrieval of piston phases based on 
minimization of the introduced continuity metric.  It is 
shown that due to the parallel nature of the optical and 
signal processing, the MAPR sensor can provide 
significantly faster phase reconstruction and can operate 
robustly even in conditions of strong intensity 
scintillation.  
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