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Abstract
A new approach for engineering a variety of unconventional laser beams with complex
spatio-temporal characteristics using coherent (coherently combinable) fiber-array laser
transmitter systems is proposed and analyzed through numerical simulations. These laser
beams, referred to here as exotic beams, include beams with periodic, quasi-periodic, and
stochastic spatio-temporal phase modulation. We show that exotic laser beams can be
generated in fiber arrays using feedback control systems of different architectures based on a
network of beam-tail interference sensors and fiber-integrated phase shifters. Due to the
extremely short (nanosecond time scale) response time of these phase shifting elements, the
proposed technique permits generation of laser beams with controllable spatial coherence
which can be used for mitigation of speckle effects in various applications including directed
energy, laser communications, active imaging, and wavefront sensing. Results of analyses and
computer simulations of exotic beams are presented for the fiber-array system with seven
subapertures.

Keywords: nonlinear dynamics, instabilities and chaos, fiber laser arrays, beam combining,
active or adaptive optics, active imaging
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1. Introduction

Fiber-integrated (LiNbO3-based) elements of recently emer-
ged coherent fiber-array-based laser systems [1, 2] offer
unprecedented opportunities for extremely fast (several
GHz-rate) control of intensity, phase, and polarization of the
outgoing beams at each fiber-array subaperture (beamlets).
With a large number of fiber collimators (subapertures),
these capabilities provide unique potentials for engineering
of laser beams with complex spatio-temporal dynamics
(including stochastic) of intensity, phase, and polarization.
These combined, i.e., composed of an array of beamlets, laser
beams are referred to here as exotic laser beams. We show
that a variety of exotic laser beams can be generated in the
coherent fiber-array systems by utilizing ideas of local and
nonlocal spatial interactions in nonlinear optical feedback
systems that were extensively studied in the late 1980s and

1990s [3–8]. Since that time, various unconventional (exotic)
laser beams in the form of rotating multi-petal structures,
arrays of spatial solitons, and chaotic beams have been
experimentally demonstrated using nonlinear 2D-feedback
systems based on optically and electronically addressed
liquid crystal (LC) phase modulators and nonlinear resonators
and interferometers [9–16]. Potential applications of these
beams for active imaging, atmospheric turbulence, thermal
blooming, and speckle effects mitigation have been widely
discussed but their implementation was precluded due to
a relatively slow time response of LC phase modulators
[6, 17, 18]. The slow response time is not an issue for exotic
laser beams that can be generated in the coherent fiber-array
laser transmitter systems. For these laser beams, the refractive
index inhomogeneities induced by the atmosphere can be
considered ‘frozen’ over thousands of exotic beam phase
pattern updates. This suggests that on the time scale of
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Figure 1. Notional schematic of a coherent fiber array with
optoelectronic feedback control system based on beam-tail
interference sensors and fiber-integrated phase shifters.

atmospheric turbulence change (∼10−3 s) these laser beams
can be treated as partially coherent optical waves with unusual
spatial coherence properties. Partially coherent beams and
their propagation properties in turbulent atmosphere has
been a topic of extensive theoretical studies [19–24]. The
approach proposed here offers an opportunity for practical
implementation of these beams.

2. Exotic beam engineering with fiber-array systems

The general idea of exotic laser beam generation is
illustrated in figure 1. Assume a coherent fiber-array laser
transmitter composed of a narrow-linewidth laser source and a
multi-channel master-oscillator power amplifier (MOPA) fiber
system based on single-mode polarization-maintaining fiber
elements (fiber splitters, phase shifters, and fiber amplifiers).
The MOPA system generates an array of Nsub Gaussian beams
that exit fiber tips located in the fiber-array collimating lens
foci [25]. The fiber array in figure 1 includes a sensing
module comprised of an array of NPD small (point-size)
photo-detectors (PDs) that are assembled at a flat electronic
board with holes for the beamlets. The sensing module is
located between the collimating lens focal and the pupil
planes. The PDs of the sensing module are placed outside
the beam cones formed by the fiber tips and collimating
lens apertures, as shown in figure 1. As a result, the PDs
are illuminated by tail sections of the Gaussian beams that
are emitted from the neighboring fiber tips. Overlapping
of the beam tails results in their interference. Examples of
sensing modules with two different geometries of PDs are
illustrated in figure 2 for the fiber-array system with seven
subapertures. Note that the seven-subaperture fiber arrays
have been implemented experimentally [26]. In the sensing
geometry in figures 2(a) and (b), the interference pattern
at each PD is formed by tail sections of two beamlets
neighboring the PD, while the interference patterns at the
PDs in figures 2(c) and (d) result from the interference of
three beamlet tails neighboring the PDs. These two sensor
types are referred to here as two- and three-tail interference
sensors. Both sensing configurations can be implemented in
practice. The two-tail sensing architecture is more tolerant
to PDs’ small displacements from their predefined locations,

Figure 2. Sensing and control system configurations based on
two-tail ((a), (b)) and three-tail ((c), (d)) interference sensors for
fiber-array systems with seven subapertures. The transmitter beam
subapertures are indicated by solid circles. The beam tails are
shown in (a), (c) by semi-transparent areas surrounding the
subapertures, and photo-detectors are depicted as small dots inside
the overlapping beam tails. The arrows illustrate connectivity
between the sensor outputs and control signals applied to the phase
shifters in systems with local ((a), (c)) and nonlocal ((b), (d)) spatial
interactions. In practice, this connectivity can be easily implemented
using an electrical wire connecting the corresponding sensor’s
output with an amplifier with controllable gain. In its turn, the
amplifier output is directly connected with the corresponding phase
shifter of the fiber array.

while the three-tail sensing architecture requires fewer sensors
[27, 28]. The signals {J1(t), . . . , JNPD(t)}measured by the PDs
are proportional to the interference pattern intensities at PDs’
locations at time t.

We ignore the impact on sensor’s signals of the beamlet
tails corresponding to non-neighboring subapertures. The
signal Jl(t) measured by the lth PD, l = 1, . . . ,NPD, depends
on the piston phases of the closest to this PD’s subapertures
and is given by [27]

Jl(t) = κ {1+ γ cos [δl′(t)− δl′′(t)+ φl]} (1)

for two-tail sensing modules in figures 2(a) and (b) and

Jl(t) = κ
{
3/2+ γ cos

[
δl′(t)− δl′′(t)+ φ

′

l

]
+ γ cos

[
δl′(t)− δl′′′(t)+ φ

′′

l

]
+ γ cos

[
δl′′(t)− δl′′′(t)+ φ

′′′

l

]}
(2)

for three-tail sensing arrangements in figures 2(c) and (d).
Here δl′(t), δl′′(t), and δl′′′(t) are the piston phases of the
subapertures neighboring the lth photo-detector, and κ and
γ (0 < γ ≤ 1) are the gain and the interference pattern
visibility coefficients that are dependent on the beam-tail
intensities at the PD locations. We assume that these
coefficients are equal for all sensors. The static phase terms φl
in (1) and φ′l, φ

′′

l , and φ′′′l in (2) are dependent on the lth PD’s
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coordinate at the sensing plane [27]. The measured signals
{Jl(t)}, l = 1, . . . ,NPD, are sent to a feedback controller (an
amplifier with controllable gain) that forms control voltages
applied to the phase shifting elements, as shown in figure 1.
The piston phases of the outgoing beamlets {δj(t)} = {uj(t)+
1j}, j = 1, . . . ,Nsub, are dependent on both the phase shifts
{uj(t)} introduced by the fiber-integrated phase shifters and
the relatively slow-varying (quasi-static on the scale of phase
shifter response time) phase deviations (phase-noise terms)
{1j} in the multi-channel fiber system3.

The dynamics of the jth piston phase uj(t) in response
to the applied control voltage Uj can be described by
the first-order differential equation characterizing electrical
charge of a capacitor associated with the jth fiber-integrated
phase shifter,

τ
duj(t)

dt
+ uj(t) = gUj

[
J1(t), . . . , Jl(t), . . . , JNPD(t)

]
, (3)

where τ is the phase shifter response time and g is the
electronic gain coefficient. In the most general case the terms
{Uj} in (3) are dependent on all sensor outputs {Jl}, and hence
on all piston phases {δj(t)}. The set of equations (3) can thus
be represented in the following equivalent form:

τ
dδj(t)

dt
+ δj(t) = gUj

[
δ1(t), . . . , δj(t), . . . , δNsub(t)

]
+1j,

(4)

where j = 1, . . . ,Nsub. We assume here that the phase-noise
terms are slow-varying over the time τ , and for this reason
their dependence on the time variable is neglected. The
right-hand side of (4) can be ‘engineered’ by considering
different combinations of sensor outputs. Here we distinguish
two characteristic feedback control system architectures
referred to as feedback control system with local and nonlocal
spatial interactions. In the feedback system with local
interactions, the dynamics of the transmitted beamlet piston
phase δj(t) in equation (4) is solely defined by the sensors’
output signals that are dependent on δj(t). These sensors are
located next to the jth subaperture. In contrast, in the system
with nonlocal spatial interactions, the dynamics of the piston
phase δj(t) is driven by the sensor outputs that are independent
of δj(t). The notional schematics in figure 2 illustrate sensing
and control system configurations with both local ((a), (c))
and nonlocal ((b), (d)) spatial interactions for systems with
two-tail ((a), (b)) and three-tail ((c), (d)) sensing geometries.

3. Piston phase dynamics in fiber-array system with
two-tail interference sensors

3.1. Local spatial interactions

Consider first a fiber-array system with local spatial
interactions based on two-tail interference sensors as shown
in figure 2(a). In this case, the control voltage Uj in

3 The common source of the phase noise in the fiber system is related to
phase shifts caused by variations in fiber lengths resulting from temperature
fluctuations and mechanical deformations (acoustic waves and/or jitter).
Frequency bandwidth of the phase noise is of the order of 102–103 Hz.

(4) is dependent only on the signal Jj given by (1). For
fiber-integrated phase shifters, the dependence of the phase
shift magnitude on the applied control voltage can be
considered as a linear function within wide (up to 10–15π rad)
phase modulation range [29]. Consequently, the dynamics of
piston phases in this system can be described by the following
set of independent nonlinear Debye-type equations:

τ
dδj(t)

dt
+ δj(t) = K

{
1+ γ cos

[
δj(t)− δ0 + φj

]}
+1j, (5)

where j = 1, . . . , 6 and K ∼ gκ is the gain coefficient.
Note that a mathematical model similar to (5) has
been used for analysis of nonlinear-feedback optical
systems with local interactions, e.g., Kerr-slice/feedback-
mirror system, nonlinear interferometers, and passive ring
resonators [30–33]. In the set of equations (5), the piston
phase of the central subaperture, δ0(t), plays a role of a
reference, with no control signal applied to the corresponding
phase shifter. Therefore, at the time scale τ, δ0(t) can be
considered as a constant, i.e., δ0(t) = δ0. We assume that all
phase shifts are defined with respect to the reference phase
and hence in (5) δ0 can be set to zero.

By setting temporal derivatives in equations (5) to zero,
one can obtain the following equations for the steady-state
solutions:

δ̂j −1j = K
[
1+ γ cos

(
δ̂j + φj

)]
. (6)

The typical dependences of the steady-state solution δ̂j on
the parameter K are shown in figures 3(a) and (b) for
φj = 0 and 1j = 0, where stable steady-state solutions of
(5) are shown by solid lines and unstable steady states by
dashed lines. The unstable steady states separate attraction
basins for trajectories of equations (5). For a fixed K, a
piston phase trajectory δj(t) that starts at the initial point
δj(t = 0) belonging to an attraction basin converges to
one of Nss(K) stable steady-state solutions δ̂(n)(K), n =
1, . . . ,Nss(K), as illustrated in figure 3. Thus, for a given
value of gain coefficient K, several different stable steady
states can be obtained by varying initial conditions. In
nonlinear optics, such dynamics is commonly associated with
optical multistability [34, 35].

In the numerical analysis performed for γ = 1.0,
equations (5) were integrated over the time interval T = 10τ
with different phase-noise terms {1j} and initial conditions
{δj(0)} using the fourth-order Runge–Kutta method [36].
The numerical simulations show that with the increase of K
the average modulo 2π differences between the stationary
piston phases of periphery subapertures approach to zero
resulting in suppression of random phase shifts {1j} for
these subapertures. Note that this dynamics of piston phases
occurs independently of both the MOPA-system-induced
random phase shifts {1j} and randomly chosen initial
conditions {δj(0)}. For a fixed K, the phase-noise suppression
efficiency was characterized by the ensemble-averaged mean

residual phase error ε̄p(K) = 1/6
∑6

j=1

〈
ε

p
j (K)

〉
. Here εp

j (K) =

mod2π [δj(T) − δ̄(T)] is the modulo 2π phase difference
between the jth periphery subaperture and the mean value
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Figure 3. Steady-state solutions of equations (5) for the jth piston
phase δj(t) versus gain coefficient K for φj = 0,1j = 0, and
γ = 1.0 (a) and γ = 0.5 (b). Solid and dashed lines correspond to
stable and unstable solutions. Piston phase trajectories δj(t) starting
at different initial conditions δj(0) indicated by gray circles are
shown by arrows.

δ̄(T) = 1/6
∑6

j=1δj(T). The averaging was performed using
an ensemble of 500 random realizations of {1j} and {δj(0)}
with uniform probability distribution within −π and π .

Contrary to the phase error for the periphery subaper-
tures, the averaged mean residual phase error ε̄cp(K) =

1/6
∑6

j=1

〈
ε

cp
j (K)

〉
characterizing the phase differences be-

tween the periphery and the central subapertures at T →∞
approaches a non-zero value ε̄cp(K)= δ̂(1)(K). Here εcp

j (K)=

mod2π [δj(T) − δ0] and δ̂(1)(K) is the stationary solution of
equations (5) corresponding to the first (lowest) branch of the
steady-state curve in figure 3. The residual phase errors ε̄p(K)
and ε̄cp(K) obtained in numerical simulations are shown by
small circles in figure 4(a).

Efficiency of the phase-noise suppression can be also
characterized by the ensemble-averaged Strehl ratio 〈St(K)〉 =
〈I(r = 0,K)〉/Idif(r = 0) defined as the ratio of the
ensemble-averaged on-axis far-field intensity 〈I(r = 0,K)〉
achieved in the fiber array with the feedback control and
the diffraction-limited intensity Idif(r = 0) corresponding
to the perfectly phased fiber array with {δj} = const.
for all subapertures. For the sensing and control system
configuration corresponding to {φj} = 0, the dependence
〈St(K)〉 is presented by small circles in figure 4(b). Due to
the above-described uncompensated phase difference between
the periphery and central subapertures, the achieved averaged
Strehl ratio is relatively low (〈St〉 ' 0.5). Phase-noise
compensation efficiency can be improved by controlling the

Figure 4. Efficiency of phase-noise suppression in the fiber-array
system with local spatial interactions (see figure 2(a)), characterized
by the ensemble-averaged residual phase errors ε̄p(K) and ε̄cp(K) in
(a) and Strehl ratio 〈St(K)〉 in (b). The results are obtained by
numerical integration of equations (5) over T = 10τ performed for
γ = 1.0 and random realizations of phase-noise terms {1j} and
initial conditions {δj(0)}. The Strehl ratio values in (b) are obtained
for {φj} = 0 and {φj} = −δ̂

(1)(K). The averaged values
ε̄p(K), ε̄cp(K), and 〈St(K)〉 are presented by small circles while the
corresponding standard deviations are shown by vertical bars. Solid
line in (a) corresponds to the steady-state solution δ̂(1)(K) (see
figure 3(a)). Grayscale images in (b) represent ensemble-averaged
far-field intensity distributions of the combined beams with output
phases {δj(T = 10τ)} obtained for K = 20. The fiber-array
parameters used in computations are described in [1, 25].

static phase shifts {φj}. This can be achieved by lateral
displacement of photo-detectors at the sensing module. Since
the mean residual phase error ε̄cp(K) in figure 4(a) approaches
ε̄cp(K) = δ̂(1)(K), one can consider the photo-detectors’
displacements that can compensate for these phase errors by
introducing static phase shifts {φj} = −δ̂

(1)(K). The Strehl
ratio data computed for this case are also presented in
figure 4(b). As seen, for K ≥ 15, one can obtain nearly ideal
compensation of the MOPA-system-induced phase noise with
〈St〉 > 0.95. This corresponds to locking of the outgoing
beamlet phases at the fiber-array exit pupil. Contrary to the
pupil-plane phase-locking techniques based on the gradient
descent optimization [27], fiber-array phasing is achieved
here by utilizing the described feedback control system with
local spatial interactions. Phase-locking efficiency can also
be evaluated by comparing the grayscale images shown
in figure 4(b) of far-field intensity distribution of the
combined beam for the fiber-array system of figure 2(a).
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Figure 5. Temporal dynamics of piston phases {δj(t)} in the fiber array with nonlocal spatial interactions corresponding to the sensing and
control system geometry in figure 2(b). The results are obtained by numerical integration of equations (7) with random initial conditions,
γ = 1.0, {φj} = 0, and different values of gain coefficient K: (a), (d) K = 2.2, (b) K = 2.5, and (c) K = 8. The phase-noise terms {1j} = 0
in (a)–(c) and are random with uniform probability distribution inside [−π, π] in (d). Grayscale insets represent far-field intensity
distributions of the combined beams averaged over 100τ . The fiber-array parameters are the same as in figure 4.

The far-field intensity obtained in the system with {φj} =

−δ̂(1)(K) practically coincides with the diffraction-limited
pattern formed by the ideally phased fiber array.

3.2. Nonlocal spatial interactions

Consider now the fiber-array system with nonlocal spatial
interactions defined by the sensing and control system
geometry shown in figure 2(b). In this system, the dynamics of
the jth piston phase is governed by the (j+1)th sensor output.
Correspondingly, as follows from (1) and (4), the nonlinear
dynamics of piston phases is described by the following set of
differential equations:

τ
dδj(t)

dt
+ δj(t) = K

{
1+ γ cos

[
δj′+1(t)− δ0

]}
+1j, (7)

where j′ = j for j = 1, . . . , 5 and j′ = 0 for j = 6 (cyclic
permutation). Note that similar type equations describe
dynamic processes in nonlinear ring cavities with delayed
feedback [37–39] and in a chain of coupled nonlinear
interferometers with field rotation [10].

Consider the results of numerical integration of equations
(7). With the gradual increase of the gain K, the dynamics
of piston phases undergoes transition from the monostatic
steady-state solution for 0 ≤ K ≤ 1.0 to bistability with
δ̂1 = δ̂3 = δ̂5 and δ̂2 = δ̂4 = δ̂6 for 1.0 < K ≤ 2.0. Further
K increase leads first to the appearance of periodic and
quasi-periodic oscillations, as illustrated in figures 5(a) and
(b) for K = 2.2 and K = 2.5, respectively. The piston phase

oscillations at the fiber-array pupil-plane result in the far-field
intensity distributions that display spatial periodicity even
after averaging over several hundred of oscillation cycles.
These time-averaged (long-exposure) far-field images are
shown by grayscale insets in figures 5(a) and (b). For
larger K, the periodic and quasi-periodic oscillations are
transitioned to statistically independent chaotic oscillations of
piston phases, as illustrated in figure 5(c) for K = 8.0. This
results in an incoherent combination of transmitted beamlets
with the nearly spatially homogeneous time-averaged far-field
intensity pattern shown at the bottom of figure 5(c). The
presence of phase noise described by the random terms
{1j} in equation (7) further complicates the dynamics. In
the presence of noise, the boundaries of different nonlinear
dynamical regimes are shifted, i.e., transitions between
periodic, quasi-periodic, and chaotic oscillations appear at
smaller or larger values of the gain coefficient K, as illustrated
in figure 5(d) for K = 2.2. For large enough gain coefficients,
however, the stochastic dynamics of systems with and without
phase noise are practically indistinguishable.

Note that the incoherent combination of the transmitted
beams in figure 5(c) is achievable over the time interval on
the order of hundreds of τ . With the nanosecond-range time
response of the fiber-integrated phase shifters, the time aver-
aging is performed under the condition that the most common
phase distorting factors including fiber-array-system-induced
phase noise and/or refractive index inhomogeneities of laser
beam propagation medium (e.g., atmosphere) are consid-
ered ‘frozen’ (static). This provides opportunities for the
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Figure 6. Scatter plots illustrating stationary solutions of equations (8), {δ̂j}, j = 1, . . . , 6, for the feedback control system with three-tail
interference sensors and local interactions for different values of gain coefficient K under the impact of piston phase noise {1j}: (a) K = 0,
(b) K = 4, (c) K = 8, and (d) K = 16. Grayscale insets represent far-field intensity distributions of the combined beams computed by
averaging 1000 instantaneous far-field intensities obtained for fiber array with piston phases in the corresponding scatter plots. The
fiber-array parameters are the same as in figure 4.

generation of laser beams that can be considered as incoherent
or partially coherent over the integration time of detectors
commonly used in practical atmospheric optics applications
such as free-space laser communications, directed energy,
remote sensing, etc [40, 41].

4. Piston phase dynamics in fiber-array system with
three-tail interference sensors

4.1. Local spatial interactions

Consider the fiber-array system with local spatial interactions
that are realized using three-tail interference sensors in the
arrangement shown in figure 2(c). The piston phase dynamics
in this system can be described by the set of six coupled

equations,

τ
dδj(t)

dt
+ δj(t) = Kj−1Jj−1[δ0(t), δj−1(t), δj(t)]

+ KjJj[δ0(t), δj(t), δj+1(t)] +1j, (8)

where Jj is the output signal (2) of the three-tail interference
sensor neighboring to the (j − 1)th and jth subapertures, and
Kj−1 and Kj are the gain coefficients that are assumed to be
equal for all j. Note that here we omit the static phase terms
dependent on the PDs’ positions at the sensing plane. The
subscript indices in (8) are obtained using cyclic permutations
as shown in figure 2(c).

Since the nonlinear equations (8) are strongly coupled,
analysis of the dynamics can be only performed through direct
numerical simulations. In the numerical analysis, equations

6
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(8) were integrated over the time interval 0 ≤ t ≤ T =
100τ in a set of 1000 trials corresponding to statistically
independent random phase-noise terms {1j} and random
initial conditions {δj(t = 0)}. In each trial the random values
{1j} and {δj(t = 0)} were generated using a standard random
number generator with uniform probability distribution inside
the [−π, π] interval. In all examined trials, the piston
phase trajectories {δj(t)} resulting from numerical integration
converge to one or another stationary solution {δj(T =
100τ)} ' {δj(T → ∞)} = {δ̂j}. Note that in the absence
of the feedback control (K = 0) the piston phases of the
outgoing beamlets converge to the random piston phases
{δ̂j} = {1j} that are generated in the MOPA system. The
control system dynamics described by equations (8) result in
nonlinear transformation (mapping) of the initially random
piston phases {δj(t = 0)} = {1j} into a set of large number of
stationary state phases {δ̂j} 6= {1j}. This nonlinear mapping
of random phases performed by the feedback control system
is illustrated in figure 6 by two-dimensional scatter plots that
characterize the relationship between values of stationary state
piston phase of a single beamlet, δ̂1, and the corresponding
stationary state piston phases of all other beamlets, {δ̂j}, j =
2, . . . , 6. Note that the piston phase of the central beamlet
is used as a reference, i.e., we assume δ0 = 0. The scatter
plot in figure 6(a) for the system without the feedback
control corresponds to random piston phases {δ̂j} = {1j}

(phase noise) with uniform probability distribution inside a
square region [−π, π]. In the system with feedback control,
this phase noise is transformed into highly non-uniform
stationary piston phase distribution shown by the scatter plot
in figure 6(b) for K = 4. This scatter plot is obtained in a
set of 1000 trials of numerical integration of equations (8)
for γ = 1 with random phases {1j}. As a result of nonlinear
interactions, the piston phases of the outgoing beamlets group
more densely along the horizontal and vertical line segments
of length π that form the upper right corner of grid cells of
size 2π × 2π . This means that the feedback system dynamics
results in self-organization of piston phases leading to a
drastic decrease of the MOPA-induced phase fluctuations at
the fiber-array exit pupil. The phases of the output beamlets
are not perfectly locked (phased), but with the increase of
the feedback control gain (parameter K) their states become
more and more localized (squeezed) (see figures 6(c) and (d)
for K = 8 and 16). This results in the formation of a regular
structure in the long-exposure far-field intensity distribution
as shown by grayscale images in figure 6.

4.2. Nonlocal spatial interactions

Consider now as an example the three-tail fiber-array
system with nonlocal spatial interactions as in figure 2(d).
The corresponding equations for piston phases {δj(t)}, j =
1, . . . , 6, can be represented in the form

τ
dδj(t)

dt
+ δj(t) = KJj+1[δ0(t), δj+1(t), δj+2(t)] +1j, (9)

where Jj is the output signal of the three-tail interference
sensor defined by the expression (2). The indices (j + 1) and
(j+ 2) in (9) are obtained using cyclic permutations.

Figure 7. Temporal dynamics of piston phases {δj(t)}, j = 1, . . . , 6,
for the feedback control system with three-tail interference sensors
and nonlocal spatial interactions for different values of gain
coefficient K: (a) K = 0.9 (dashed lines) and K = 1.1 (solid lines),
and (b) K = 1.2. In all cases, γ = 1.0 and {1j} = 0. Grayscale
insets represent (a) instantaneous (t = 200τ,K = 1.1) and
(b) averaged over 100τ (100τ < t ≤ 200τ,K = 1.2) far-field
intensity distributions of the combined beams. The fiber-array
parameters are the same as in figure 4.

Consider results of numerical analysis of the set of
equations (9) in the absence of phase noise performed for
γ = 1.0 and different values of the gain coefficient K. With
gradual increase of K from zero to K ' 1.0, the piston phase
trajectories {δj(t)} converge to a single steady-state solution
{δj(t →∞)} = δ̂(K). The transition of piston phases to the
steady-state solution for K = 0.9 is shown in figure 7(a)
by dashed lines. With the gain coefficient increase over
unity, the monostatic steady-state solution becomes unstable
resulting in transitioning of piston phase trajectories to
different steady-state solutions, as illustrated in figure 7(a)
for K = 1.1. With further K increase, the multistatic solutions
become unstable leading first to the development of periodic
and quasi-periodic oscillations, as shown in figure 7(b) for
K = 1.2, and then to uncorrelated chaotic oscillations.

5. Concluding remarks

We have shown that coherent fiber-array systems with
feedback control of the outgoing beam piston phases
based on a network of beam-tail interference sensors
offer opportunities for engineering of a great variety of
unconventional (exotic) laser beams with complex nonlinear
spatio-temporal dynamics. Using as an example a fiber-array
system with seven subapertures, we demonstrate that basic
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ideas of self-organization in nonlinear optics can be directly
applied to the coherent fiber-array systems, resulting in
the generation of regimes similar to the nonlinear optics
dynamical regimes, including spatial and temporal instability,
patterns, spatio-temporal oscillations, and chaotic regimes.
With the increase of the number of fiber-array subapertures
and beam-tail interference sensors and the engineering of
more complicated network of connections between sensors
and phase shifting elements one can expect the generation
of an even greater variety of different nonlinear dynamical
regimes and unconventional laser beams that can be used for
a number of applications including active imaging, directed
energy, and laser communications.
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