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ABSTRACT  

In this paper we study the performance of an atmospheric imaging technique we referred to as digital adaptive optics. 
The technique consists in two major steps: (1) an optical sensor provides simultaneous measurements of the optical field 
wavefront phase and intensity distributions (complex field) in the system pupil, and (2) a digital processing approach is 
used to synthesize a compensated image from the complex field measurement. A numerical analysis of the system 
performance is provided for an anisoplanatic imaging scenario. 
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1. INTRODUCTION  
1.1 Conventional adaptive optics 
Regardless of the application of interest, conventional adaptive optics (AO) systems typically perform two tasks: (1) they 
sense the wavefront aberrations resulting from wave propagation through the random media (e.g. the atmosphere), and 
(2) they compensate these aberrations using a phase conjugation approach. The components required to perform these 
tasks typically consist of a wavefront sensor (WFS) such as the widely-used Shack-Hartmann WFS, a wavefront 
corrector (WFC) – typically a deformable or segmented mirror – and a control device that computes the actuator 
commands sent to the WFC from the WFS data. This compensation process must be performed at speeds that match or 
exceed the rate of evolution of the random media. As a result of this requirement conventional adaptive optics systems 
are usually complex and often costly.  

1.2 Limitations of conventional adaptive optics 
Performance of AO systems is limited by a number of factors among which wavefront correctors performance have a 
strong impact. First, WFC’s have a limited number of degrees-of-freedom. For example, the number of control channels 
of a deformable mirror seldom exceeds a few tens across its aperture. This limitation affects the spatial scale of the 
wavefront features the WFC can compensate and prevents the system from mitigating high-order aberrations (i.e. 
aberrations with small spatial features). This constrain is especially critical for optical systems with aperture diameter ܦ ≫  ଴ is the Fried parameter [1]. Another restrictive feature of WFC’s is the limited amplitude of theݎ ଴, whereݎ
wavefront phase they can compensate. This limitation prevents in parts conventional AO systems to be effective under 
strong (deep) turbulence conditions, which are typical for optical systems operating over long and/or near-horizontal 
(slant) atmospheric propagation paths. Finally, the limited temporal response of WFC’s may prevent them from 
providing compensation at sufficiently high rates. 

Although technological developments have been providing WFC’s with higher spatial resolution, increased dynamical 
range and bandwidth, anisoplanatism [2] remains a fundamental limitation for adaptive optics compensation, especially 
in deep turbulence propagation scenarios. 

In the remainder of this paper we describe an alternative approach to conventional adaptive optics – referred to as digital 
adaptive optics (DAO) – which alleviates the need for physical WFC devices and their corresponding real-time control 
hardware, and relieves the system from some the limitations associated to them. In section 2 we present the approach 
used in DAO systems and discuss their limitations. The DAO technique is then applied to an anisoplanatic imaging 
scenario and results of numerical analysis are presented in section 3. Finally section 4 draws conclusions. 
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2.2 Wavefront sensing techniques for DAO systems 
In conventional AO systems the spatial resolution of the wavefront sensor output (i.e. the spacing between data points) is 
selected in relation to the spatial resolution of the wavefront corrector (e.g. spacing between deformable mirror 
actuators). Sensing of the incoming wavefront aberrations with high spatial frequency does not provide better AO 
performance if the corrector device is unable to match this spatial resolution. In contrast, image quality in DAO systems 
is directly related to the spatial resolution of the wavefront measurement. DAO systems hence require relatively high 
resolution wavefront sensing capabilities. 

Although the resolution yielded by wavefront sensors typically used in adaptive optics such as Shack-Hartmann [3,4] or 
curvature sensors [5,6] does not exceed a few tens to a couple hundred data points across the system’s aperture, a 
number of wavefront sensing techniques capable of providing high resolution outputs exist. Among them some are 
potentially suitable for DAO systems including: phase retrieval from sets of pupil and focal plane intensity distributions 
[7-9], phase diversity [10,11], schlieren techniques and phase contrast techniques [12,13] such as the Zernike filter [14-
16] and the Smartt point-diffraction interferometer [17-20]. Approaches based on holographic recording of the wavefront 
have also been used successfully [21-23]. A sensor developed recently – referred to as multi-aperture phase 
reconstruction (MAPR) sensor [24] – which uses a hybrid approach between the Shack-Hartmann and Gerchberg-Saxton 
[7] techniques provides high-resolution measurements and is also a candidate for DAO system implementation. 

A growing number of imaging applications now require operation over near-horizontal or slant atmospheric paths. These 
propagations scenarios are characterized by moderate to strong intensity scintillation [25-27]. This means that in addition 
to high resolution requirements, robustness to high scintillation levels is a key criterion for selecting sensors suitable for 
DAO applications. Another important criterion is the computational cost of the wavefront reconstruction algorithm as it 
impacts the speed of operation of the sensor. In this regard the MAPR sensor appears suitable for DAO applications 
since it is capable of providing high-resolution measurements under conditions of strong intensity scintillation (so called 
scintillation-resistant) and in the presence of branch points [28,29]. It yields an average Strehl ratio exceeding 0.9 for 
scintillation index values ߪூଶ ≤ 1.25 and ݎ/ܦ଴ ≤ 8, and 0.8 for ߪூଶ ≤ 1.75 and ݎ/ܦ଴ ≤ 12 and reconstruction is 
computationally efficient as a result of the parallel architecture of the reconstruction algorithm. Numerical results 
presented are obtained for complex field measurements (࢘)ܣ provided by a MAPR sensor [24]. 

2.3 Anisoplanatic image synthesis and compensation 
As a result of anisoplanatism image quality varies significantly across the field-of-view of the system and image 
compensation based on phase conjugation is effective only over a small angular extent with size related to the isoplanatic 
angle ߠ଴. An approach for performing efficient DAO compensation is to apply the technique locally over image regions 
that are nearly isoplanatic. We use in this section a block-by-block (mosaic) post-processing technique in which the 
DAO approach is applied sequentially to region (block) Ω௝ and the resulting image consists in the combination of 
compensated image regions Ω௝ into a single image corresponding to the entire FOV (region Ω). Consider an image 
region Ω௝ defined by function 

(ܚ)ஐೕܯ = exp ቎൭− หܚ − ௝หଶ2߱ஐଶܚ ൱଼቏, (2) 

where ܚ௝ defines the position of the ݆௧௛ image region and ߱ஐ denoted its size. Image synthesis and DAO compensation 
over region Ω௝ is performed based on the measurement (ܚ)ܣ of the optical field in the pupil of the system and consists of 
the following steps: 

• Step 1: Digital wavefront correction 

A wavefront corrector phase function ߮஽஺ை(ܚ) is represented as  

߮஽஺ை(ܚ) = ෍ ܽ௞ܵ௞(ܚ)ேವಲೀ
௞ୀଵ , (3) 

where {ܵ௞(ܚ)} is a set of response functions for the digital wavefront corrector, ܉ = {ܽ௞} is the vector of commands 
sent to the DWFC, and ஽ܰ஺ை is the number of control channels of the DWFC. The corrector phase function ߮஽஺ை(ܚ) 
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is then applied to the complex field amplitude (ܚ)ܣ provided by the CFS and results in compensated field ܣ஽஺ை(ܚ) 
given by ܣ஽஺ை(ܚ) = (ܚ)ܣ exp[−݆߮஽஺ை(ܚ)]. (4) 

• Step 2: Image synthesis 

The compensated field ܣ஽஺ை(ܚ) in Eq. (4) is used for synthesis of the DAO compensated image ܫ஽஺ை(ܚ). The DAO 
image is computed using the Fresnel approximation as follows [15]: 
(ܚ)஽஺ைܫ  = ቤ නܼߣ1 exp(′ܚ)஽஺ைܣ ቈ−݆ 2݇ ቆ|ܚ′|ଶܨ − ܚ| − ௜ܮଶ|′ܚ ቇ቉ ାஶ′ܚ݀

ିஶ ቤଶ, (5) 

 
where ݇ is the wave number, ܨ is the focal length of the digital lens and ܮ௜ = ܨ/1) −  ଵ is the distanceି(ܮ/1
between the digital lens plane and the image plane. The term ܮ denotes the distance between the lens and the object 
plane of interest. 

• Step 3: Local image quality metric computation 

The quality of the synthesized image ܫ஽஺ை(ܚ) in Eq. (5) depends on the command vector ܉ applied to the digital 
WFC [Eq. (3)]. Vector ܉ can be considered as a parameter controlling the quality of image ܫ஽஺ை(ܚ). Improving 
image quality in the region Ω௝ can be achieved by optimizing a sharpness metric ܬஐౠ given by 

(܉)ஐೕܬ = ׬ ஽஺ைଶܫ ׬ܚ݀(ܚ)ஐೕܯ(ܚ)  (6) ,ܚ݀(ܚ)ஐೕܯ(ܚ)஽஺ைܫ

 

where ܯஐೕ(ܚ) is the function defining region Ω௝ [see Eq. (2)]. Although the intensity-squared sharpness metric is 
commonly used, other criteria could be used to assess image quality such as a gradient-based metric or the 
Tenengrad criterion. 

• Step 4: Image quality metric optimization 

Optimization of metrics ܬஐೕ can be achieved using various numerical techniques. We consider for example metric 
optimization based on the stochastic parallel gradient descent (SPGD) control algorithm [30]. In accordance with 
this algorithm command vector ܉ update rule is given at each iteration ݊ by the following procedure: ܽ௞(௡ାଵ) = ܽ௞(௡) + ௞(௡)ܽߜஐೕ(௡)ܬߜ(௡)ߛ for ݇ = 1,… , ஽ܰ஺ை, (7) 

where ߛ(௡) > 0 is a gain coefficient, ܬߜஐೕ(௡) is the metric response to small-amplitude random perturbations of 

control vector {ܽߜ௞(௡)} applied simultaneously to all ஽ܰ஺ை DWFC control channels. The control channel updates are 
repeated until convergence of vector ܉ toward a small vicinity of the stationary state. The number of iterations ௜ܰ௧ 
required for convergence is defined from the common criterion 

߳(݊ = ௜ܰ௧) = ቚܬஐೕ(௡) − ஐೕ(௡)ܬஐೕ(௡ିଵ)ቚܬ ≤ ߳଴ ≪ 1, (8) 

and the resulting control vector for compensation of region Ω௝, denoted ܉ஐೕ, corresponds to the vector obtained at 
the last iteration: ܉ஐೕ =  Optimization over the entire image region Ω can be achieved by repeating .(௡ୀே೔೟)܉
sequentially steps 1 through 4 for each region Ω௝ and results in a set of control vectors {܉ஐౠ}.  

In an ideal compensation scenario the DWFC phase ߮஽஺ை(ܚ) resulting from the optimization process would compensate 
the turbulence-induced phase aberration so that ߮஽஺ை(ܚ) = ߮௧௨௥௕(ܚ) [see Eq. (1)]. In this ideal case only phase 
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information related to the object being imaged remains in the compensated field: arg[ܣ஽஺ை(ܚ)] = ߮௢௕௝(ܚ) and leads to 
optimal image quality. 

3. PERFORMANCE ANALYSIS 
In this section performance of DAO systems is analyzed using a numerical simulation and results for various turbulence 
strengths are discussed.  
 
3.1 Numerical model 
Performance was evaluated from an ensemble of digitally-generated random complex fields used as input optical waves 
to the DAO system. For each realization of the input field the complex amplitude in the DAO system pupil plane ܣ௜௡(࢘) 
(see Fig. 1) was obtained using the conventional split-operator approach for simulating wave optics propagation through 
a volume of atmospheric turbulence [31]. At the beginning of the propagation path (ݖ = 0) we used a monochromatic 
optical field with complex amplitude ܣ௣௥௢௣(ܚ, ݖ = 0) = (ܚ)௢௕௝ଵ/ଶܫ exp[݆߮௦௨௥௙(ܚ)], where ܫ௢௕௝(ܚ) is the intensity 
distribution of the object being imaged and ߮௦௨௥௙(ܚ) is a random phase function uniformly distributed in [−ߨ, -ߜ and [ߨ
correlated in space. The term ߮௦௨௥௙(ܚ) is used to model the “optically rough” surface of the object. The optical field 
complex amplitude at the end of the propagation path (ݖ = (ܚ)௜௡ܣ :was utilized as the DAO system input field (ܮ ,ܚ)௣௥௢௣ܣ= ݖ =  Optical inhomogeneities along the propagation path were modeled with a set of 10 random phase .(ܮ
screens corresponding to the Kolmogorov turbulence power spectrum. We considered a horizontal propagation scenario 
so the phase screens were equally spaced along the propagation path and their impact (i.e. turbulence strength) was 
characterized by a constant ratio ݎ/ܦ଴ where ܦ is the diameter of the DAO system aperture and ݎ଴ is the characteristic 
Fried parameter for plane waves. By modifying ratio ݎ/ܦ଴ one can control the strength of input field phase aberrations. 
In the numerical simulations, ݎ/ܦ଴ ranged from zero (i.e. free-space propagation) to 10. Figures 2(a)-2(d) show 
examples of the input field intensity and phase distributions that are obtained using the technique described above for ݎ/ܦ଴ = 4 [(a) and (b)] and for ݎ/ܦ଴ = 8 [(c) and (d)]. Note that the phase distributions in Figs. 2(b) and 2(d) contain 
phase discontinuities (branch points). Images were obtained for a propagation distance ܮ = ௗ௜௙௙ܮ ௗ௜௙௙ whereܮ0.05 ݇ , is the diffractive distance	ଶ(2/ܦ)݇= =  .is the imaging wavelength ߣ is the wave number, and ߣ/ߨ2

In the DAO system, digital wavefront compensation function ߮஽஺ை(ܚ) is computed as a weighted sum of response 
functions ܵ௞(ܚ) [see Eq. (3)]. In our numerical simulation these response functions are taken as scaled Zernike 
polynomials: ܵ௞(ܚ) = ܼ௞(ܳܚ), where ܼ௞(ܚ) is the Zernike polynomial with index ݇ and ܳ is a scaling factor. Since 
Zernike polynomials are defined onto the unit circle the term ܳ is chosen as ܳ =  (ܚ)so that response functions ܵ௞ 2/ܦ
are defined over the aperture area of the DAO system. In the numerical analysis we used ஽ܰ஺ை = 36 Zernike 
polynomials corresponding to the first 8 Zernike modes. Note that the first Zernike polynomial (piston) does not impact 
image quality and does not need to be included in the construction of ߮஽஺ை(ܚ). Similarly, Zernike polynomials with 
index ݇ = 2 and ݇ = 3 (tip and tilt) do not have an influence on image quality or its metric. However, tip-tilt wavefront 
aberrations in the pupil plane cause a global shift of the intensity distribution in the image plane. In order to compensate 
for this, image alignment is performed in our numerical simulations by mean of a conventional registration technique 
[32] using an ensemble average image as a reference. 

The quality of the DAO-compensated image ܫ஽஺ை(ܚ) is assessed using a sharpness metric defined as  

ܬ = ׬ ஽஺ைଶܫ ׬ܚ݀(ܚ) ௗ௟ଶܫ ܚ݀(ܚ) , (9) 

where ܫௗ௟(ܚ) is the image that would be obtained in the absence of atmospheric turbulence (i.e. diffraction-limited 
image). In the case of an ideal compensation the turbulence-induced wavefront aberrations are fully corrected by the 
DWFC [߮஽஺ை(ܚ) = ߮௧௨௥௕(ܚ)] and ܬ = 1. 
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aberrations in real-time the DAO operates as a post-processing scheme. DAO systems has the advantage of requiring 
simpler and less costly implementations since they do not require opto-mechanical wavefront correctors and their real-
time control hardware, but this also means they are primarily suited for applications that do not require real-time 
operation. 

Performance of DAO systems was evaluated by mean of a numerical analysis. The analysis revealed the DAO approach 
can significantly improve image quality even in strong turbulence conditions. The block-by-block processing technique 
presented was shown to be effective for image synthesis and compensation under anisoplanatic scenarios.  
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